package main import ( "github.com/astaxie/beego" "math" ) type Matrix4 struct { Elements [16]float64 `json:"elements"` } type SQ struct { //矩阵结构 M, N int //m是列数,n是行数 Data [][]float64 } //矩阵定义 func (this *SQ) Set(m int, n int, data []float64) { //m是列数,n是行数,data是矩阵数据(从左到右由上到下填充) this.M = m this.N = n if len(data) != this.M*this.N { beego.Debug("矩阵定义失败") return } else { k := 0 if this.M*this.N == len(data) { for i := 0; i < this.N; i++ { var tmpArr []float64 for j := 0; j < this.M; j++ { tmpArr = append(tmpArr, data[k]) k++ } this.Data = append(this.Data, tmpArr) } } else { beego.Debug("矩阵定义失败") return } } } //a的列数和b的行数相等 //矩阵乘法 func Mul(a SQ, b SQ) [][]float64 { if a.M == b.M { res := [][]float64{} for i := 0; i < a.M; i++ { t := []float64{} for j := 0; j < b.M; j++ { r := float64(0) for k := 0; k < a.M; k++ { r += a.Data[i][k] * b.Data[k][j] } t = append(t, r) } res = append(res, t) } return res } else { beego.Debug("两矩阵无法进行相乘运算") return [][]float64{} } /*一个应用的例子 a := [][]int{ {1,2}, {3,4}, {5,6}, } b := [][]int{ {1,2,3}, {3,4,1}, } A := SQ{ 2,3, a, } B := SQ{ 3,2, b, } res := mul(A,B) */ } //计算n阶行列式(N=n-1) func Det(Matrix [][]float64, N int) float64 { var T0, T1, T2, Cha int var Num float64 var B [][]float64 if N > 0 { Cha = 0 for i := 0; i < N; i++ { var tmpArr []float64 for j := 0; j < N; j++ { tmpArr = append(tmpArr, 0) } B = append(B, tmpArr) } Num = 0 for T0 = 0; T0 <= N; T0++ { //T0循环 for T1 = 1; T1 <= N; T1++ { //T1循环 for T2 = 0; T2 <= N-1; T2++ { //T2循环 if T2 == T0 { Cha = 1 } B[T1-1][T2] = Matrix[T1][T2+Cha] } //T2循环 Cha = 0 } //T1循环 Num = Num + Matrix[0][T0]*Det(B, N-1)*math.Pow(-1, float64(T0)) } //T0循环 return Num } else if N == 0 { return Matrix[0][0] } return 0 } //矩阵求逆(N=n-1) func Inverse(Matrix [][]float64, N int) (MatrixC [][]float64) { var T0, T1, T2, T3 int var B [][]float64 for i := 0; i < N; i++ { var tmpArr []float64 for j := 0; j < N; j++ { tmpArr = append(tmpArr, 0) } B = append(B, tmpArr) } Chay := 0 Chax := 0 var add float64 add = 1 / Det(Matrix, N) for T0 = 0; T0 <= N; T0++ { for T3 = 0; T3 <= N; T3++ { for T1 = 0; T1 <= N-1; T1++ { if T1 < T0 { Chax = 0 } else { Chax = 1 } for T2 = 0; T2 <= N-1; T2++ { if T2 < T3 { Chay = 0 } else { Chay = 1 } B[T1][T2] = Matrix[T1+Chax][T2+Chay] } //T2循环 } //T1循环 Det(B, N-1) MatrixC[T3][T0] = Det(B, N-1) * add * (math.Pow(-1, float64(T0+T3))) } } return MatrixC }