You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

3128 lines
102 KiB

// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package executor
import (
"bytes"
"context"
"math"
"sort"
"strings"
"sync"
"time"
"unsafe"
"github.com/cznic/mathutil"
"github.com/cznic/sortutil"
"github.com/pingcap/errors"
"github.com/pingcap/kvproto/pkg/diagnosticspb"
"github.com/pingcap/parser/ast"
"github.com/pingcap/parser/auth"
"github.com/pingcap/parser/model"
"github.com/pingcap/parser/mysql"
"github.com/pingcap/tidb/distsql"
"github.com/pingcap/tidb/domain"
"github.com/pingcap/tidb/executor/aggfuncs"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/expression/aggregation"
"github.com/pingcap/tidb/infoschema"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/metrics"
plannercore "github.com/pingcap/tidb/planner/core"
plannerutil "github.com/pingcap/tidb/planner/util"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/statistics"
"github.com/pingcap/tidb/table"
"github.com/pingcap/tidb/table/tables"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util"
"github.com/pingcap/tidb/util/admin"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/execdetails"
"github.com/pingcap/tidb/util/logutil"
"github.com/pingcap/tidb/util/ranger"
"github.com/pingcap/tidb/util/rowcodec"
"github.com/pingcap/tidb/util/timeutil"
"github.com/pingcap/tipb/go-tipb"
"go.uber.org/zap"
)
var (
executorCounterMergeJoinExec = metrics.ExecutorCounter.WithLabelValues("MergeJoinExec")
executorCountHashJoinExec = metrics.ExecutorCounter.WithLabelValues("HashJoinExec")
executorCounterHashAggExec = metrics.ExecutorCounter.WithLabelValues("HashAggExec")
executorStreamAggExec = metrics.ExecutorCounter.WithLabelValues("StreamAggExec")
executorCounterSortExec = metrics.ExecutorCounter.WithLabelValues("SortExec")
executorCounterTopNExec = metrics.ExecutorCounter.WithLabelValues("TopNExec")
executorCounterNestedLoopApplyExec = metrics.ExecutorCounter.WithLabelValues("NestedLoopApplyExec")
executorCounterIndexLookUpJoin = metrics.ExecutorCounter.WithLabelValues("IndexLookUpJoin")
executorCounterIndexLookUpExecutor = metrics.ExecutorCounter.WithLabelValues("IndexLookUpExecutor")
executorCounterIndexMergeReaderExecutor = metrics.ExecutorCounter.WithLabelValues("IndexMergeReaderExecutor")
)
// executorBuilder builds an Executor from a Plan.
// The InfoSchema must not change during execution.
type executorBuilder struct {
ctx sessionctx.Context
is infoschema.InfoSchema
snapshotTS uint64 // The consistent snapshot timestamp for the executor to read data.
snapshotTSCached bool
err error // err is set when there is error happened during Executor building process.
hasLock bool
}
func newExecutorBuilder(ctx sessionctx.Context, is infoschema.InfoSchema) *executorBuilder {
return &executorBuilder{
ctx: ctx,
is: is,
}
}
// MockPhysicalPlan is used to return a specified executor in when build.
// It is mainly used for testing.
type MockPhysicalPlan interface {
plannercore.PhysicalPlan
GetExecutor() Executor
}
func (b *executorBuilder) build(p plannercore.Plan) Executor {
switch v := p.(type) {
case nil:
return nil
case *plannercore.Change:
return b.buildChange(v)
case *plannercore.CheckTable:
return b.buildCheckTable(v)
case *plannercore.RecoverIndex:
return b.buildRecoverIndex(v)
case *plannercore.CleanupIndex:
return b.buildCleanupIndex(v)
case *plannercore.CheckIndexRange:
return b.buildCheckIndexRange(v)
case *plannercore.ChecksumTable:
return b.buildChecksumTable(v)
case *plannercore.ReloadExprPushdownBlacklist:
return b.buildReloadExprPushdownBlacklist(v)
case *plannercore.ReloadOptRuleBlacklist:
return b.buildReloadOptRuleBlacklist(v)
case *plannercore.AdminPlugins:
return b.buildAdminPlugins(v)
case *plannercore.DDL:
return b.buildDDL(v)
case *plannercore.Deallocate:
return b.buildDeallocate(v)
case *plannercore.Delete:
return b.buildDelete(v)
case *plannercore.Execute:
return b.buildExecute(v)
case *plannercore.Trace:
return b.buildTrace(v)
case *plannercore.Explain:
return b.buildExplain(v)
case *plannercore.PointGetPlan:
return b.buildPointGet(v)
case *plannercore.BatchPointGetPlan:
return b.buildBatchPointGet(v)
case *plannercore.Insert:
return b.buildInsert(v)
case *plannercore.LoadData:
return b.buildLoadData(v)
case *plannercore.LoadStats:
return b.buildLoadStats(v)
case *plannercore.IndexAdvise:
return b.buildIndexAdvise(v)
case *plannercore.PhysicalLimit:
return b.buildLimit(v)
case *plannercore.Prepare:
return b.buildPrepare(v)
case *plannercore.PhysicalLock:
return b.buildSelectLock(v)
case *plannercore.CancelDDLJobs:
return b.buildCancelDDLJobs(v)
case *plannercore.ShowNextRowID:
return b.buildShowNextRowID(v)
case *plannercore.ShowDDL:
return b.buildShowDDL(v)
case *plannercore.PhysicalShowDDLJobs:
return b.buildShowDDLJobs(v)
case *plannercore.ShowDDLJobQueries:
return b.buildShowDDLJobQueries(v)
case *plannercore.ShowSlow:
return b.buildShowSlow(v)
case *plannercore.PhysicalShow:
return b.buildShow(v)
case *plannercore.Simple:
return b.buildSimple(v)
case *plannercore.Set:
return b.buildSet(v)
case *plannercore.SetConfig:
return b.buildSetConfig(v)
case *plannercore.PhysicalSort:
return b.buildSort(v)
case *plannercore.PhysicalTopN:
return b.buildTopN(v)
case *plannercore.PhysicalUnionAll:
return b.buildUnionAll(v)
case *plannercore.Update:
return b.buildUpdate(v)
case *plannercore.PhysicalUnionScan:
return b.buildUnionScanExec(v)
case *plannercore.PhysicalHashJoin:
return b.buildHashJoin(v)
case *plannercore.PhysicalMergeJoin:
return b.buildMergeJoin(v)
case *plannercore.PhysicalIndexJoin:
return b.buildIndexLookUpJoin(v)
case *plannercore.PhysicalIndexMergeJoin:
return b.buildIndexLookUpMergeJoin(v)
case *plannercore.PhysicalIndexHashJoin:
return b.buildIndexNestedLoopHashJoin(v)
case *plannercore.PhysicalSelection:
return b.buildSelection(v)
case *plannercore.PhysicalHashAgg:
return b.buildHashAgg(v)
case *plannercore.PhysicalStreamAgg:
return b.buildStreamAgg(v)
case *plannercore.PhysicalProjection:
return b.buildProjection(v)
case *plannercore.PhysicalMemTable:
return b.buildMemTable(v)
case *plannercore.PhysicalTableDual:
return b.buildTableDual(v)
case *plannercore.PhysicalApply:
return b.buildApply(v)
case *plannercore.PhysicalMaxOneRow:
return b.buildMaxOneRow(v)
case *plannercore.Analyze:
return b.buildAnalyze(v)
case *plannercore.PhysicalTableReader:
return b.buildTableReader(v)
case *plannercore.PhysicalIndexReader:
return b.buildIndexReader(v)
case *plannercore.PhysicalIndexLookUpReader:
return b.buildIndexLookUpReader(v)
case *plannercore.PhysicalWindow:
return b.buildWindow(v)
case *plannercore.PhysicalShuffle:
return b.buildShuffle(v)
case *plannercore.PhysicalShuffleDataSourceStub:
return b.buildShuffleDataSourceStub(v)
case *plannercore.SQLBindPlan:
return b.buildSQLBindExec(v)
case *plannercore.SplitRegion:
return b.buildSplitRegion(v)
case *plannercore.PhysicalIndexMergeReader:
return b.buildIndexMergeReader(v)
case *plannercore.SelectInto:
return b.buildSelectInto(v)
case *plannercore.AdminShowTelemetry:
return b.buildAdminShowTelemetry(v)
case *plannercore.AdminResetTelemetryID:
return b.buildAdminResetTelemetryID(v)
default:
if mp, ok := p.(MockPhysicalPlan); ok {
return mp.GetExecutor()
}
b.err = ErrUnknownPlan.GenWithStack("Unknown Plan %T", p)
return nil
}
}
func (b *executorBuilder) buildCancelDDLJobs(v *plannercore.CancelDDLJobs) Executor {
e := &CancelDDLJobsExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
jobIDs: v.JobIDs,
}
txn, err := e.ctx.Txn(true)
if err != nil {
b.err = err
return nil
}
e.errs, b.err = admin.CancelJobs(txn, e.jobIDs)
if b.err != nil {
return nil
}
return e
}
func (b *executorBuilder) buildChange(v *plannercore.Change) Executor {
return &ChangeExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
ChangeStmt: v.ChangeStmt,
}
}
func (b *executorBuilder) buildShowNextRowID(v *plannercore.ShowNextRowID) Executor {
e := &ShowNextRowIDExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
tblName: v.TableName,
}
return e
}
func (b *executorBuilder) buildShowDDL(v *plannercore.ShowDDL) Executor {
// We get DDLInfo here because for Executors that returns result set,
// next will be called after transaction has been committed.
// We need the transaction to get DDLInfo.
e := &ShowDDLExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
}
var err error
ownerManager := domain.GetDomain(e.ctx).DDL().OwnerManager()
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
e.ddlOwnerID, err = ownerManager.GetOwnerID(ctx)
cancel()
if err != nil {
b.err = err
return nil
}
txn, err := e.ctx.Txn(true)
if err != nil {
b.err = err
return nil
}
ddlInfo, err := admin.GetDDLInfo(txn)
if err != nil {
b.err = err
return nil
}
e.ddlInfo = ddlInfo
e.selfID = ownerManager.ID()
return e
}
func (b *executorBuilder) buildShowDDLJobs(v *plannercore.PhysicalShowDDLJobs) Executor {
e := &ShowDDLJobsExec{
jobNumber: int(v.JobNumber),
is: b.is,
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
}
return e
}
func (b *executorBuilder) buildShowDDLJobQueries(v *plannercore.ShowDDLJobQueries) Executor {
e := &ShowDDLJobQueriesExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
jobIDs: v.JobIDs,
}
return e
}
func (b *executorBuilder) buildShowSlow(v *plannercore.ShowSlow) Executor {
e := &ShowSlowExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
ShowSlow: v.ShowSlow,
}
return e
}
// buildIndexLookUpChecker builds check information to IndexLookUpReader.
func buildIndexLookUpChecker(b *executorBuilder, readerPlan *plannercore.PhysicalIndexLookUpReader,
readerExec *IndexLookUpExecutor) {
is := readerPlan.IndexPlans[0].(*plannercore.PhysicalIndexScan)
readerExec.dagPB.OutputOffsets = make([]uint32, 0, len(is.Index.Columns))
for i := 0; i <= len(is.Index.Columns); i++ {
readerExec.dagPB.OutputOffsets = append(readerExec.dagPB.OutputOffsets, uint32(i))
}
readerExec.ranges = ranger.FullRange()
ts := readerPlan.TablePlans[0].(*plannercore.PhysicalTableScan)
readerExec.handleIdx = ts.HandleIdx
tps := make([]*types.FieldType, 0, len(is.Columns)+1)
for _, col := range is.Columns {
tps = append(tps, &col.FieldType)
}
tps = append(tps, types.NewFieldType(mysql.TypeLonglong))
readerExec.checkIndexValue = &checkIndexValue{idxColTps: tps}
colNames := make([]string, 0, len(is.Columns))
for _, col := range is.Columns {
colNames = append(colNames, col.Name.O)
}
if cols, missingColName := table.FindCols(readerExec.table.Cols(), colNames, true); missingColName != "" {
b.err = plannercore.ErrUnknownColumn.GenWithStack("Unknown column %s", missingColName)
} else {
readerExec.idxTblCols = cols
}
}
func (b *executorBuilder) buildCheckTable(v *plannercore.CheckTable) Executor {
readerExecs := make([]*IndexLookUpExecutor, 0, len(v.IndexLookUpReaders))
for _, readerPlan := range v.IndexLookUpReaders {
readerExec, err := buildNoRangeIndexLookUpReader(b, readerPlan)
if err != nil {
b.err = errors.Trace(err)
return nil
}
buildIndexLookUpChecker(b, readerPlan, readerExec)
readerExecs = append(readerExecs, readerExec)
}
e := &CheckTableExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dbName: v.DBName,
table: v.Table,
indexInfos: v.IndexInfos,
is: b.is,
srcs: readerExecs,
exitCh: make(chan struct{}),
retCh: make(chan error, len(readerExecs)),
checkIndex: v.CheckIndex,
}
return e
}
func buildRecoverIndexCols(tblInfo *model.TableInfo, indexInfo *model.IndexInfo) []*model.ColumnInfo {
columns := make([]*model.ColumnInfo, 0, len(indexInfo.Columns))
for _, idxCol := range indexInfo.Columns {
columns = append(columns, tblInfo.Columns[idxCol.Offset])
}
handleOffset := len(columns)
handleColsInfo := &model.ColumnInfo{
ID: model.ExtraHandleID,
Name: model.ExtraHandleName,
Offset: handleOffset,
}
handleColsInfo.FieldType = *types.NewFieldType(mysql.TypeLonglong)
columns = append(columns, handleColsInfo)
return columns
}
func (b *executorBuilder) buildRecoverIndex(v *plannercore.RecoverIndex) Executor {
tblInfo := v.Table.TableInfo
t, err := b.is.TableByName(v.Table.Schema, tblInfo.Name)
if err != nil {
b.err = err
return nil
}
idxName := strings.ToLower(v.IndexName)
index := tables.GetWritableIndexByName(idxName, t)
if index == nil {
b.err = errors.Errorf("index `%v` is not found in table `%v`.", v.IndexName, v.Table.Name.O)
return nil
}
e := &RecoverIndexExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
columns: buildRecoverIndexCols(tblInfo, index.Meta()),
index: index,
table: t,
physicalID: t.Meta().ID,
}
return e
}
func buildCleanupIndexCols(tblInfo *model.TableInfo, indexInfo *model.IndexInfo) []*model.ColumnInfo {
columns := make([]*model.ColumnInfo, 0, len(indexInfo.Columns)+1)
for _, idxCol := range indexInfo.Columns {
columns = append(columns, tblInfo.Columns[idxCol.Offset])
}
handleColsInfo := &model.ColumnInfo{
ID: model.ExtraHandleID,
Name: model.ExtraHandleName,
Offset: len(tblInfo.Columns),
}
handleColsInfo.FieldType = *types.NewFieldType(mysql.TypeLonglong)
columns = append(columns, handleColsInfo)
return columns
}
func (b *executorBuilder) buildCleanupIndex(v *plannercore.CleanupIndex) Executor {
tblInfo := v.Table.TableInfo
t, err := b.is.TableByName(v.Table.Schema, tblInfo.Name)
if err != nil {
b.err = err
return nil
}
idxName := strings.ToLower(v.IndexName)
var index table.Index
for _, idx := range t.Indices() {
if idx.Meta().State != model.StatePublic {
continue
}
if idxName == idx.Meta().Name.L {
index = idx
break
}
}
if index == nil {
b.err = errors.Errorf("index `%v` is not found in table `%v`.", v.IndexName, v.Table.Name.O)
return nil
}
e := &CleanupIndexExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
idxCols: buildCleanupIndexCols(tblInfo, index.Meta()),
index: index,
table: t,
physicalID: t.Meta().ID,
batchSize: 20000,
}
return e
}
func (b *executorBuilder) buildCheckIndexRange(v *plannercore.CheckIndexRange) Executor {
tb, err := b.is.TableByName(v.Table.Schema, v.Table.Name)
if err != nil {
b.err = err
return nil
}
e := &CheckIndexRangeExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
handleRanges: v.HandleRanges,
table: tb.Meta(),
is: b.is,
}
idxName := strings.ToLower(v.IndexName)
for _, idx := range tb.Indices() {
if idx.Meta().Name.L == idxName {
e.index = idx.Meta()
e.startKey = make([]types.Datum, len(e.index.Columns))
break
}
}
return e
}
func (b *executorBuilder) buildChecksumTable(v *plannercore.ChecksumTable) Executor {
e := &ChecksumTableExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
tables: make(map[int64]*checksumContext),
done: false,
}
startTs, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
for _, t := range v.Tables {
e.tables[t.TableInfo.ID] = newChecksumContext(t.DBInfo, t.TableInfo, startTs)
}
return e
}
func (b *executorBuilder) buildReloadExprPushdownBlacklist(v *plannercore.ReloadExprPushdownBlacklist) Executor {
return &ReloadExprPushdownBlacklistExec{baseExecutor{ctx: b.ctx}}
}
func (b *executorBuilder) buildReloadOptRuleBlacklist(v *plannercore.ReloadOptRuleBlacklist) Executor {
return &ReloadOptRuleBlacklistExec{baseExecutor{ctx: b.ctx}}
}
func (b *executorBuilder) buildAdminPlugins(v *plannercore.AdminPlugins) Executor {
return &AdminPluginsExec{baseExecutor: baseExecutor{ctx: b.ctx}, Action: v.Action, Plugins: v.Plugins}
}
func (b *executorBuilder) buildDeallocate(v *plannercore.Deallocate) Executor {
base := newBaseExecutor(b.ctx, nil, v.ID())
base.initCap = chunk.ZeroCapacity
e := &DeallocateExec{
baseExecutor: base,
Name: v.Name,
}
return e
}
func (b *executorBuilder) buildSelectLock(v *plannercore.PhysicalLock) Executor {
b.hasLock = true
if b.err = b.updateForUpdateTSIfNeeded(v.Children()[0]); b.err != nil {
return nil
}
// Build 'select for update' using the 'for update' ts.
b.snapshotTS = b.ctx.GetSessionVars().TxnCtx.GetForUpdateTS()
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
if !b.ctx.GetSessionVars().InTxn() {
// Locking of rows for update using SELECT FOR UPDATE only applies when autocommit
// is disabled (either by beginning transaction with START TRANSACTION or by setting
// autocommit to 0. If autocommit is enabled, the rows matching the specification are not locked.
// See https://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html
return src
}
e := &SelectLockExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), src),
Lock: v.Lock,
tblID2Handle: v.TblID2Handle,
partitionedTable: v.PartitionedTable,
}
return e
}
func (b *executorBuilder) buildLimit(v *plannercore.PhysicalLimit) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
n := int(mathutil.MinUint64(v.Count, uint64(b.ctx.GetSessionVars().MaxChunkSize)))
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
base.initCap = n
e := &LimitExec{
baseExecutor: base,
begin: v.Offset,
end: v.Offset + v.Count,
}
return e
}
func (b *executorBuilder) buildPrepare(v *plannercore.Prepare) Executor {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = chunk.ZeroCapacity
return &PrepareExec{
baseExecutor: base,
is: b.is,
name: v.Name,
sqlText: v.SQLText,
}
}
func (b *executorBuilder) buildExecute(v *plannercore.Execute) Executor {
e := &ExecuteExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
is: b.is,
name: v.Name,
usingVars: v.UsingVars,
id: v.ExecID,
stmt: v.Stmt,
plan: v.Plan,
outputNames: v.OutputNames(),
}
return e
}
func (b *executorBuilder) buildShow(v *plannercore.PhysicalShow) Executor {
e := &ShowExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
Tp: v.Tp,
DBName: model.NewCIStr(v.DBName),
Table: v.Table,
Column: v.Column,
IndexName: v.IndexName,
Flag: v.Flag,
Roles: v.Roles,
User: v.User,
is: b.is,
Full: v.Full,
IfNotExists: v.IfNotExists,
GlobalScope: v.GlobalScope,
Extended: v.Extended,
}
if e.Tp == ast.ShowGrants && e.User == nil {
// The input is a "show grants" statement, fulfill the user and roles field.
// Note: "show grants" result are different from "show grants for current_user",
// The former determine privileges with roles, while the later doesn't.
vars := e.ctx.GetSessionVars()
e.User = &auth.UserIdentity{Username: vars.User.AuthUsername, Hostname: vars.User.AuthHostname}
e.Roles = vars.ActiveRoles
}
if e.Tp == ast.ShowMasterStatus {
// show master status need start ts.
if _, err := e.ctx.Txn(true); err != nil {
b.err = err
}
}
return e
}
func (b *executorBuilder) buildSimple(v *plannercore.Simple) Executor {
switch s := v.Statement.(type) {
case *ast.GrantStmt:
return b.buildGrant(s)
case *ast.RevokeStmt:
return b.buildRevoke(s)
case *ast.BRIEStmt:
return b.buildBRIE(s, v.Schema())
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = chunk.ZeroCapacity
e := &SimpleExec{
baseExecutor: base,
Statement: v.Statement,
is: b.is,
}
return e
}
func (b *executorBuilder) buildSet(v *plannercore.Set) Executor {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = chunk.ZeroCapacity
e := &SetExecutor{
baseExecutor: base,
vars: v.VarAssigns,
}
return e
}
func (b *executorBuilder) buildSetConfig(v *plannercore.SetConfig) Executor {
return &SetConfigExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
p: v,
}
}
func (b *executorBuilder) buildInsert(v *plannercore.Insert) Executor {
if v.SelectPlan != nil {
// Try to update the forUpdateTS for insert/replace into select statements.
// Set the selectPlan parameter to nil to make it always update the forUpdateTS.
if b.err = b.updateForUpdateTSIfNeeded(nil); b.err != nil {
return nil
}
}
b.snapshotTS = b.ctx.GetSessionVars().TxnCtx.GetForUpdateTS()
selectExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
var baseExec baseExecutor
if selectExec != nil {
baseExec = newBaseExecutor(b.ctx, nil, v.ID(), selectExec)
} else {
baseExec = newBaseExecutor(b.ctx, nil, v.ID())
}
baseExec.initCap = chunk.ZeroCapacity
ivs := &InsertValues{
baseExecutor: baseExec,
Table: v.Table,
Columns: v.Columns,
Lists: v.Lists,
SetList: v.SetList,
GenExprs: v.GenCols.Exprs,
allAssignmentsAreConstant: v.AllAssignmentsAreConstant,
hasRefCols: v.NeedFillDefaultValue,
SelectExec: selectExec,
}
err := ivs.initInsertColumns()
if err != nil {
b.err = err
return nil
}
if v.IsReplace {
return b.buildReplace(ivs)
}
insert := &InsertExec{
InsertValues: ivs,
OnDuplicate: append(v.OnDuplicate, v.GenCols.OnDuplicates...),
}
return insert
}
func (b *executorBuilder) buildLoadData(v *plannercore.LoadData) Executor {
tbl, ok := b.is.TableByID(v.Table.TableInfo.ID)
if !ok {
b.err = errors.Errorf("Can not get table %d", v.Table.TableInfo.ID)
return nil
}
insertVal := &InsertValues{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
Table: tbl,
Columns: v.Columns,
GenExprs: v.GenCols.Exprs,
}
err := insertVal.initInsertColumns()
if err != nil {
b.err = err
return nil
}
loadDataExec := &LoadDataExec{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
IsLocal: v.IsLocal,
OnDuplicate: v.OnDuplicate,
loadDataInfo: &LoadDataInfo{
row: make([]types.Datum, len(insertVal.insertColumns)),
InsertValues: insertVal,
Path: v.Path,
Table: tbl,
FieldsInfo: v.FieldsInfo,
LinesInfo: v.LinesInfo,
IgnoreLines: v.IgnoreLines,
Ctx: b.ctx,
},
}
var defaultLoadDataBatchCnt uint64 = 20000 // TODO this will be changed to variable in another pr
loadDataExec.loadDataInfo.InitQueues()
loadDataExec.loadDataInfo.SetMaxRowsInBatch(defaultLoadDataBatchCnt)
return loadDataExec
}
func (b *executorBuilder) buildLoadStats(v *plannercore.LoadStats) Executor {
e := &LoadStatsExec{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
info: &LoadStatsInfo{v.Path, b.ctx},
}
return e
}
func (b *executorBuilder) buildIndexAdvise(v *plannercore.IndexAdvise) Executor {
e := &IndexAdviseExec{
baseExecutor: newBaseExecutor(b.ctx, nil, v.ID()),
IsLocal: v.IsLocal,
indexAdviseInfo: &IndexAdviseInfo{
Path: v.Path,
MaxMinutes: v.MaxMinutes,
MaxIndexNum: v.MaxIndexNum,
LinesInfo: v.LinesInfo,
Ctx: b.ctx,
},
}
return e
}
func (b *executorBuilder) buildReplace(vals *InsertValues) Executor {
replaceExec := &ReplaceExec{
InsertValues: vals,
}
return replaceExec
}
func (b *executorBuilder) buildGrant(grant *ast.GrantStmt) Executor {
e := &GrantExec{
baseExecutor: newBaseExecutor(b.ctx, nil, 0),
Privs: grant.Privs,
ObjectType: grant.ObjectType,
Level: grant.Level,
Users: grant.Users,
WithGrant: grant.WithGrant,
TLSOptions: grant.TLSOptions,
is: b.is,
}
return e
}
func (b *executorBuilder) buildRevoke(revoke *ast.RevokeStmt) Executor {
e := &RevokeExec{
baseExecutor: newBaseExecutor(b.ctx, nil, 0),
ctx: b.ctx,
Privs: revoke.Privs,
ObjectType: revoke.ObjectType,
Level: revoke.Level,
Users: revoke.Users,
is: b.is,
}
return e
}
func (b *executorBuilder) buildDDL(v *plannercore.DDL) Executor {
e := &DDLExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
stmt: v.Statement,
is: b.is,
}
return e
}
// buildTrace builds a TraceExec for future executing. This method will be called
// at build().
func (b *executorBuilder) buildTrace(v *plannercore.Trace) Executor {
t := &TraceExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
stmtNode: v.StmtNode,
builder: b,
format: v.Format,
}
if t.format == plannercore.TraceFormatLog {
return &SortExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), t),
ByItems: []*plannerutil.ByItems{
{Expr: &expression.Column{
Index: 0,
RetType: types.NewFieldType(mysql.TypeTimestamp),
}},
},
schema: v.Schema(),
}
}
return t
}
// buildExplain builds a explain executor. `e.rows` collects final result to `ExplainExec`.
func (b *executorBuilder) buildExplain(v *plannercore.Explain) Executor {
explainExec := &ExplainExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
explain: v,
}
if v.Analyze {
if b.ctx.GetSessionVars().StmtCtx.RuntimeStatsColl == nil {
b.ctx.GetSessionVars().StmtCtx.RuntimeStatsColl = execdetails.NewRuntimeStatsColl()
}
explainExec.analyzeExec = b.build(v.TargetPlan)
}
return explainExec
}
func (b *executorBuilder) buildSelectInto(v *plannercore.SelectInto) Executor {
child := b.build(v.TargetPlan)
if b.err != nil {
return nil
}
return &SelectIntoExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), child),
intoOpt: v.IntoOpt,
}
}
func (b *executorBuilder) buildUnionScanExec(v *plannercore.PhysicalUnionScan) Executor {
reader := b.build(v.Children()[0])
if b.err != nil {
return nil
}
return b.buildUnionScanFromReader(reader, v)
}
// buildUnionScanFromReader builds union scan executor from child executor.
// Note that this function may be called by inner workers of index lookup join concurrently.
// Be careful to avoid data race.
func (b *executorBuilder) buildUnionScanFromReader(reader Executor, v *plannercore.PhysicalUnionScan) Executor {
us := &UnionScanExec{baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), reader)}
// Get the handle column index of the below Plan.
us.belowHandleIndex = v.HandleCol.Index
us.mutableRow = chunk.MutRowFromTypes(retTypes(us))
// If the push-downed condition contains virtual column, we may build a selection upon reader
originReader := reader
if sel, ok := reader.(*SelectionExec); ok {
reader = sel.children[0]
}
switch x := reader.(type) {
case *TableReaderExecutor:
us.desc = x.desc
// Union scan can only be in a write transaction, so DirtyDB should has non-nil value now, thus
// GetDirtyDB() is safe here. If this table has been modified in the transaction, non-nil DirtyTable
// can be found in DirtyDB now, so GetDirtyTable is safe; if this table has not been modified in the
// transaction, empty DirtyTable would be inserted into DirtyDB, it does not matter when multiple
// goroutines write empty DirtyTable to DirtyDB for this table concurrently. Although the DirtyDB looks
// safe for data race in all the cases, the map of golang will throw panic when it's accessed in parallel.
// So we lock it when getting dirty table.
physicalTableID := getPhysicalTableID(x.table)
us.dirty = GetDirtyDB(b.ctx).GetDirtyTable(physicalTableID)
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.virtualColumnIndex = x.virtualColumnIndex
case *IndexReaderExecutor:
us.desc = x.desc
for _, ic := range x.index.Columns {
for i, col := range x.columns {
if col.Name.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
physicalTableID := getPhysicalTableID(x.table)
us.dirty = GetDirtyDB(b.ctx).GetDirtyTable(physicalTableID)
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
case *IndexLookUpExecutor:
us.desc = x.desc
for _, ic := range x.index.Columns {
for i, col := range x.columns {
if col.Name.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
physicalTableID := getPhysicalTableID(x.table)
us.dirty = GetDirtyDB(b.ctx).GetDirtyTable(physicalTableID)
us.conditions, us.conditionsWithVirCol = plannercore.SplitSelCondsWithVirtualColumn(v.Conditions)
us.columns = x.columns
us.table = x.table
us.virtualColumnIndex = buildVirtualColumnIndex(us.Schema(), us.columns)
default:
// The mem table will not be written by sql directly, so we can omit the union scan to avoid err reporting.
return originReader
}
return us
}
// buildMergeJoin builds MergeJoinExec executor.
func (b *executorBuilder) buildMergeJoin(v *plannercore.PhysicalMergeJoin) Executor {
leftExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightExec := b.build(v.Children()[1])
if b.err != nil {
return nil
}
defaultValues := v.DefaultValues
if defaultValues == nil {
if v.JoinType == plannercore.RightOuterJoin {
defaultValues = make([]types.Datum, leftExec.Schema().Len())
} else {
defaultValues = make([]types.Datum, rightExec.Schema().Len())
}
}
e := &MergeJoinExec{
stmtCtx: b.ctx.GetSessionVars().StmtCtx,
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), leftExec, rightExec),
compareFuncs: v.CompareFuncs,
joiner: newJoiner(
b.ctx,
v.JoinType,
v.JoinType == plannercore.RightOuterJoin,
defaultValues,
v.OtherConditions,
retTypes(leftExec),
retTypes(rightExec),
nil,
),
isOuterJoin: v.JoinType.IsOuterJoin(),
desc: v.Desc,
}
leftTable := &mergeJoinTable{
childIndex: 0,
joinKeys: v.LeftJoinKeys,
filters: v.LeftConditions,
}
rightTable := &mergeJoinTable{
childIndex: 1,
joinKeys: v.RightJoinKeys,
filters: v.RightConditions,
}
if v.JoinType == plannercore.RightOuterJoin {
e.innerTable = leftTable
e.outerTable = rightTable
} else {
e.innerTable = rightTable
e.outerTable = leftTable
}
e.innerTable.isInner = true
// optimizer should guarantee that filters on inner table are pushed down
// to tikv or extracted to a Selection.
if len(e.innerTable.filters) != 0 {
b.err = errors.Annotate(ErrBuildExecutor, "merge join's inner filter should be empty.")
return nil
}
executorCounterMergeJoinExec.Inc()
return e
}
func (b *executorBuilder) buildSideEstCount(v *plannercore.PhysicalHashJoin) float64 {
buildSide := v.Children()[v.InnerChildIdx]
if v.UseOuterToBuild {
buildSide = v.Children()[1-v.InnerChildIdx]
}
if buildSide.Stats().HistColl == nil || buildSide.Stats().HistColl.Pseudo {
return 0.0
}
return buildSide.StatsCount()
}
func (b *executorBuilder) buildHashJoin(v *plannercore.PhysicalHashJoin) Executor {
leftExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightExec := b.build(v.Children()[1])
if b.err != nil {
return nil
}
e := &HashJoinExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), leftExec, rightExec),
concurrency: v.Concurrency,
joinType: v.JoinType,
isOuterJoin: v.JoinType.IsOuterJoin(),
useOuterToBuild: v.UseOuterToBuild,
}
defaultValues := v.DefaultValues
lhsTypes, rhsTypes := retTypes(leftExec), retTypes(rightExec)
if v.InnerChildIdx == 1 {
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
// consider collations
leftTypes := make([]*types.FieldType, 0, len(retTypes(leftExec)))
for _, tp := range retTypes(leftExec) {
leftTypes = append(leftTypes, tp.Clone())
}
rightTypes := make([]*types.FieldType, 0, len(retTypes(rightExec)))
for _, tp := range retTypes(rightExec) {
rightTypes = append(rightTypes, tp.Clone())
}
leftIsBuildSide := true
if v.UseOuterToBuild {
// update the buildSideEstCount due to changing the build side
if v.InnerChildIdx == 1 {
e.buildSideExec, e.buildKeys = leftExec, v.LeftJoinKeys
e.probeSideExec, e.probeKeys = rightExec, v.RightJoinKeys
e.outerFilter = v.LeftConditions
} else {
e.buildSideExec, e.buildKeys = rightExec, v.RightJoinKeys
e.probeSideExec, e.probeKeys = leftExec, v.LeftJoinKeys
e.outerFilter = v.RightConditions
leftIsBuildSide = false
}
if defaultValues == nil {
defaultValues = make([]types.Datum, e.probeSideExec.Schema().Len())
}
} else {
if v.InnerChildIdx == 0 {
e.buildSideExec, e.buildKeys = leftExec, v.LeftJoinKeys
e.probeSideExec, e.probeKeys = rightExec, v.RightJoinKeys
e.outerFilter = v.RightConditions
} else {
e.buildSideExec, e.buildKeys = rightExec, v.RightJoinKeys
e.probeSideExec, e.probeKeys = leftExec, v.LeftJoinKeys
e.outerFilter = v.LeftConditions
leftIsBuildSide = false
}
if defaultValues == nil {
defaultValues = make([]types.Datum, e.buildSideExec.Schema().Len())
}
}
e.buildSideEstCount = b.buildSideEstCount(v)
childrenUsedSchema := markChildrenUsedCols(v.Schema(), v.Children()[0].Schema(), v.Children()[1].Schema())
e.joiners = make([]joiner, e.concurrency)
for i := uint(0); i < e.concurrency; i++ {
e.joiners[i] = newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues,
v.OtherConditions, lhsTypes, rhsTypes, childrenUsedSchema)
}
executorCountHashJoinExec.Inc()
for i := range v.EqualConditions {
chs, coll := v.EqualConditions[i].CharsetAndCollation(e.ctx)
bt := leftTypes[v.LeftJoinKeys[i].Index]
bt.Charset, bt.Collate = chs, coll
pt := rightTypes[v.RightJoinKeys[i].Index]
pt.Charset, pt.Collate = chs, coll
}
if leftIsBuildSide {
e.buildTypes, e.probeTypes = leftTypes, rightTypes
} else {
e.buildTypes, e.probeTypes = rightTypes, leftTypes
}
return e
}
func (b *executorBuilder) buildHashAgg(v *plannercore.PhysicalHashAgg) Executor {
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
sessionVars := b.ctx.GetSessionVars()
e := &HashAggExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), src),
sc: sessionVars.StmtCtx,
PartialAggFuncs: make([]aggfuncs.AggFunc, 0, len(v.AggFuncs)),
GroupByItems: v.GroupByItems,
}
// We take `create table t(a int, b int);` as example.
//
// 1. If all the aggregation functions are FIRST_ROW, we do not need to set the defaultVal for them:
// e.g.
// mysql> select distinct a, b from t;
// 0 rows in set (0.00 sec)
//
// 2. If there exists group by items, we do not need to set the defaultVal for them either:
// e.g.
// mysql> select avg(a) from t group by b;
// Empty set (0.00 sec)
//
// mysql> select avg(a) from t group by a;
// +--------+
// | avg(a) |
// +--------+
// | NULL |
// +--------+
// 1 row in set (0.00 sec)
if len(v.GroupByItems) != 0 || aggregation.IsAllFirstRow(v.AggFuncs) {
e.defaultVal = nil
} else {
e.defaultVal = chunk.NewChunkWithCapacity(retTypes(e), 1)
}
for _, aggDesc := range v.AggFuncs {
if aggDesc.HasDistinct || len(aggDesc.OrderByItems) > 0 {
e.isUnparallelExec = true
}
}
// When we set both tidb_hashagg_final_concurrency and tidb_hashagg_partial_concurrency to 1,
// we do not need to parallelly execute hash agg,
// and this action can be a workaround when meeting some unexpected situation using parallelExec.
if finalCon, partialCon := sessionVars.HashAggFinalConcurrency, sessionVars.HashAggPartialConcurrency; finalCon <= 0 || partialCon <= 0 || finalCon == 1 && partialCon == 1 {
e.isUnparallelExec = true
}
partialOrdinal := 0
for i, aggDesc := range v.AggFuncs {
if e.isUnparallelExec {
e.PartialAggFuncs = append(e.PartialAggFuncs, aggfuncs.Build(b.ctx, aggDesc, i))
} else {
ordinal := []int{partialOrdinal}
partialOrdinal++
if aggDesc.Name == ast.AggFuncAvg {
ordinal = append(ordinal, partialOrdinal+1)
partialOrdinal++
}
partialAggDesc, finalDesc := aggDesc.Split(ordinal)
partialAggFunc := aggfuncs.Build(b.ctx, partialAggDesc, i)
finalAggFunc := aggfuncs.Build(b.ctx, finalDesc, i)
e.PartialAggFuncs = append(e.PartialAggFuncs, partialAggFunc)
e.FinalAggFuncs = append(e.FinalAggFuncs, finalAggFunc)
if partialAggDesc.Name == ast.AggFuncGroupConcat {
// For group_concat, finalAggFunc and partialAggFunc need shared `truncate` flag to do duplicate.
finalAggFunc.(interface{ SetTruncated(t *int32) }).SetTruncated(
partialAggFunc.(interface{ GetTruncated() *int32 }).GetTruncated(),
)
}
}
if e.defaultVal != nil {
value := aggDesc.GetDefaultValue()
e.defaultVal.AppendDatum(i, &value)
}
}
executorCounterHashAggExec.Inc()
return e
}
func (b *executorBuilder) buildStreamAgg(v *plannercore.PhysicalStreamAgg) Executor {
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
e := &StreamAggExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), src),
groupChecker: newVecGroupChecker(b.ctx, v.GroupByItems),
aggFuncs: make([]aggfuncs.AggFunc, 0, len(v.AggFuncs)),
}
if len(v.GroupByItems) != 0 || aggregation.IsAllFirstRow(v.AggFuncs) {
e.defaultVal = nil
} else {
e.defaultVal = chunk.NewChunkWithCapacity(retTypes(e), 1)
}
for i, aggDesc := range v.AggFuncs {
aggFunc := aggfuncs.Build(b.ctx, aggDesc, i)
e.aggFuncs = append(e.aggFuncs, aggFunc)
if e.defaultVal != nil {
value := aggDesc.GetDefaultValue()
e.defaultVal.AppendDatum(i, &value)
}
}
executorStreamAggExec.Inc()
return e
}
func (b *executorBuilder) buildSelection(v *plannercore.PhysicalSelection) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
e := &SelectionExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
filters: v.Conditions,
}
return e
}
func (b *executorBuilder) buildProjection(v *plannercore.PhysicalProjection) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
e := &ProjectionExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
numWorkers: b.ctx.GetSessionVars().ProjectionConcurrency,
evaluatorSuit: expression.NewEvaluatorSuite(v.Exprs, v.AvoidColumnEvaluator),
calculateNoDelay: v.CalculateNoDelay,
}
// If the calculation row count for this Projection operator is smaller
// than a Chunk size, we turn back to the un-parallel Projection
// implementation to reduce the goroutine overhead.
if int64(v.StatsCount()) < int64(b.ctx.GetSessionVars().MaxChunkSize) {
e.numWorkers = 0
}
return e
}
func (b *executorBuilder) buildTableDual(v *plannercore.PhysicalTableDual) Executor {
if v.RowCount != 0 && v.RowCount != 1 {
b.err = errors.Errorf("buildTableDual failed, invalid row count for dual table: %v", v.RowCount)
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = v.RowCount
e := &TableDualExec{
baseExecutor: base,
numDualRows: v.RowCount,
}
return e
}
// `getSnapshotTS` returns the timestamp of the snapshot that a reader should read.
func (b *executorBuilder) getSnapshotTS() (uint64, error) {
// `refreshForUpdateTSForRC` should always be invoked before returning the cached value to
// ensure the correct value is returned even the `snapshotTS` field is already set by other
// logics. However for `IndexLookUpMergeJoin` and `IndexLookUpHashJoin`, it requires caching the
// snapshotTS and and may even use it after the txn being destroyed. In this case, mark
// `snapshotTSCached` to skip `refreshForUpdateTSForRC`.
if b.snapshotTSCached {
return b.snapshotTS, nil
}
if b.ctx.GetSessionVars().IsPessimisticReadConsistency() {
if err := b.refreshForUpdateTSForRC(); err != nil {
return 0, err
}
}
if b.snapshotTS != 0 {
b.snapshotTSCached = true
// Return the cached value.
return b.snapshotTS, nil
}
snapshotTS := b.ctx.GetSessionVars().SnapshotTS
txn, err := b.ctx.Txn(true)
if err != nil {
return 0, err
}
if snapshotTS == 0 {
snapshotTS = txn.StartTS()
}
b.snapshotTS = snapshotTS
if b.snapshotTS == 0 {
return 0, errors.Trace(ErrGetStartTS)
}
b.snapshotTSCached = true
return snapshotTS, nil
}
func (b *executorBuilder) buildMemTable(v *plannercore.PhysicalMemTable) Executor {
switch v.DBName.L {
case util.MetricSchemaName.L:
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricTableExtractor),
},
}
case util.InformationSchemaName.L:
switch v.Table.Name.L {
case strings.ToLower(infoschema.TableClusterConfig):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterConfigRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
},
}
case strings.ToLower(infoschema.TableClusterLoad):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_LoadInfo,
},
}
case strings.ToLower(infoschema.TableClusterHardware):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_HardwareInfo,
},
}
case strings.ToLower(infoschema.TableClusterSystemInfo):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterServerInfoRetriever{
extractor: v.Extractor.(*plannercore.ClusterTableExtractor),
serverInfoType: diagnosticspb.ServerInfoType_SystemInfo,
},
}
case strings.ToLower(infoschema.TableClusterLog):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &clusterLogRetriever{
extractor: v.Extractor.(*plannercore.ClusterLogTableExtractor),
},
}
case strings.ToLower(infoschema.TableInspectionResult):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionResultRetriever{
extractor: v.Extractor.(*plannercore.InspectionResultTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableInspectionSummary):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionSummaryRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.InspectionSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableInspectionRules):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &inspectionRuleRetriever{
extractor: v.Extractor.(*plannercore.InspectionRuleTableExtractor),
},
}
case strings.ToLower(infoschema.TableMetricSummary):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricsSummaryRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableMetricSummaryByLabel):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &MetricsSummaryByLabelRetriever{
table: v.Table,
extractor: v.Extractor.(*plannercore.MetricSummaryTableExtractor),
timeRange: v.QueryTimeRange,
},
}
case strings.ToLower(infoschema.TableSchemata),
strings.ToLower(infoschema.TableStatistics),
strings.ToLower(infoschema.TableTiDBIndexes),
strings.ToLower(infoschema.TableViews),
strings.ToLower(infoschema.TableTables),
strings.ToLower(infoschema.TableSequences),
strings.ToLower(infoschema.TablePartitions),
strings.ToLower(infoschema.TableEngines),
strings.ToLower(infoschema.TableCollations),
strings.ToLower(infoschema.TableAnalyzeStatus),
strings.ToLower(infoschema.TableClusterInfo),
strings.ToLower(infoschema.TableProfiling),
strings.ToLower(infoschema.TableCharacterSets),
strings.ToLower(infoschema.TableKeyColumn),
strings.ToLower(infoschema.TableUserPrivileges),
strings.ToLower(infoschema.TableMetricTables),
strings.ToLower(infoschema.TableCollationCharacterSetApplicability),
strings.ToLower(infoschema.TableProcesslist),
strings.ToLower(infoschema.ClusterTableProcesslist),
strings.ToLower(infoschema.TableTiKVRegionPeers),
strings.ToLower(infoschema.TableTiDBHotRegions),
strings.ToLower(infoschema.TableSessionVar),
strings.ToLower(infoschema.TableConstraints),
strings.ToLower(infoschema.TableTiFlashReplica),
strings.ToLower(infoschema.TableTiDBServersInfo),
strings.ToLower(infoschema.TableStatementsSummary),
strings.ToLower(infoschema.TableStatementsSummaryHistory),
strings.ToLower(infoschema.ClusterTableStatementsSummary),
strings.ToLower(infoschema.ClusterTableStatementsSummaryHistory):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &memtableRetriever{
table: v.Table,
columns: v.Columns,
},
}
case strings.ToLower(infoschema.TableColumns):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &hugeMemTableRetriever{
table: v.Table,
columns: v.Columns,
},
}
case strings.ToLower(infoschema.TableSlowQuery), strings.ToLower(infoschema.ClusterTableSlowLog):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &slowQueryRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.SlowQueryExtractor),
},
}
case strings.ToLower(infoschema.TableStorageStats):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &tableStorageStatsRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.TableStorageStatsExtractor),
},
}
case strings.ToLower(infoschema.TableDDLJobs):
return &DDLJobsReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
is: b.is,
}
case strings.ToLower(infoschema.TableTiFlashTables),
strings.ToLower(infoschema.TableTiFlashSegments):
return &MemTableReaderExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
table: v.Table,
retriever: &TiFlashSystemTableRetriever{
table: v.Table,
outputCols: v.Columns,
extractor: v.Extractor.(*plannercore.TiFlashSystemTableExtractor),
},
}
}
}
tb, _ := b.is.TableByID(v.Table.ID)
return &TableScanExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
t: tb,
columns: v.Columns,
seekHandle: math.MinInt64,
isVirtualTable: !tb.Type().IsNormalTable(),
}
}
func (b *executorBuilder) buildSort(v *plannercore.PhysicalSort) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
sortExec := SortExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
ByItems: v.ByItems,
schema: v.Schema(),
}
executorCounterSortExec.Inc()
return &sortExec
}
func (b *executorBuilder) buildTopN(v *plannercore.PhysicalTopN) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
sortExec := SortExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec),
ByItems: v.ByItems,
schema: v.Schema(),
}
executorCounterTopNExec.Inc()
return &TopNExec{
SortExec: sortExec,
limit: &plannercore.PhysicalLimit{Count: v.Count, Offset: v.Offset},
}
}
func (b *executorBuilder) buildApply(v *plannercore.PhysicalApply) *NestedLoopApplyExec {
leftChild := b.build(v.Children()[0])
if b.err != nil {
return nil
}
rightChild := b.build(v.Children()[1])
if b.err != nil {
return nil
}
otherConditions := append(expression.ScalarFuncs2Exprs(v.EqualConditions), v.OtherConditions...)
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, v.Children()[v.InnerChildIdx].Schema().Len())
}
outerExec, innerExec := leftChild, rightChild
outerFilter, innerFilter := v.LeftConditions, v.RightConditions
if v.InnerChildIdx == 0 {
outerExec, innerExec = rightChild, leftChild
outerFilter, innerFilter = v.RightConditions, v.LeftConditions
}
tupleJoiner := newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0,
defaultValues, otherConditions, retTypes(leftChild), retTypes(rightChild), nil)
e := &NestedLoopApplyExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec, innerExec),
innerExec: innerExec,
outerExec: outerExec,
outerFilter: outerFilter,
innerFilter: innerFilter,
outer: v.JoinType != plannercore.InnerJoin,
joiner: tupleJoiner,
outerSchema: v.OuterSchema,
}
executorCounterNestedLoopApplyExec.Inc()
return e
}
func (b *executorBuilder) buildMaxOneRow(v *plannercore.PhysicalMaxOneRow) Executor {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
base.initCap = 2
base.maxChunkSize = 2
e := &MaxOneRowExec{baseExecutor: base}
return e
}
func (b *executorBuilder) buildUnionAll(v *plannercore.PhysicalUnionAll) Executor {
childExecs := make([]Executor, len(v.Children()))
for i, child := range v.Children() {
childExecs[i] = b.build(child)
if b.err != nil {
return nil
}
}
e := &UnionExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExecs...),
concurrency: b.ctx.GetSessionVars().Concurrency.UnionConcurrency,
}
return e
}
func (b *executorBuilder) buildSplitRegion(v *plannercore.SplitRegion) Executor {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = 1
base.maxChunkSize = 1
if v.IndexInfo != nil {
return &SplitIndexRegionExec{
baseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
indexInfo: v.IndexInfo,
lower: v.Lower,
upper: v.Upper,
num: v.Num,
valueLists: v.ValueLists,
}
}
if len(v.ValueLists) > 0 {
return &SplitTableRegionExec{
baseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
valueLists: v.ValueLists,
}
}
return &SplitTableRegionExec{
baseExecutor: base,
tableInfo: v.TableInfo,
partitionNames: v.PartitionNames,
lower: v.Lower[0],
upper: v.Upper[0],
num: v.Num,
}
}
func (b *executorBuilder) buildUpdate(v *plannercore.Update) Executor {
tblID2table := make(map[int64]table.Table, len(v.TblColPosInfos))
for _, info := range v.TblColPosInfos {
tbl, _ := b.is.TableByID(info.TblID)
tblID2table[info.TblID] = tbl
if len(v.PartitionedTable) > 0 {
// The v.PartitionedTable collects the partitioned table.
// Replace the original table with the partitioned table to support partition selection.
// e.g. update t partition (p0, p1), the new values are not belong to the given set p0, p1
// Using the table in v.PartitionedTable returns a proper error, while using the original table can't.
for _, p := range v.PartitionedTable {
if info.TblID == p.Meta().ID {
tblID2table[info.TblID] = p
}
}
}
}
if b.err = b.updateForUpdateTSIfNeeded(v.SelectPlan); b.err != nil {
return nil
}
b.snapshotTS = b.ctx.GetSessionVars().TxnCtx.GetForUpdateTS()
selExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), selExec)
base.initCap = chunk.ZeroCapacity
updateExec := &UpdateExec{
baseExecutor: base,
OrderedList: v.OrderedList,
allAssignmentsAreConstant: v.AllAssignmentsAreConstant,
tblID2table: tblID2table,
tblColPosInfos: v.TblColPosInfos,
}
return updateExec
}
func (b *executorBuilder) buildDelete(v *plannercore.Delete) Executor {
tblID2table := make(map[int64]table.Table, len(v.TblColPosInfos))
for _, info := range v.TblColPosInfos {
tblID2table[info.TblID], _ = b.is.TableByID(info.TblID)
}
if b.err = b.updateForUpdateTSIfNeeded(v.SelectPlan); b.err != nil {
return nil
}
b.snapshotTS = b.ctx.GetSessionVars().TxnCtx.GetForUpdateTS()
selExec := b.build(v.SelectPlan)
if b.err != nil {
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), selExec)
base.initCap = chunk.ZeroCapacity
deleteExec := &DeleteExec{
baseExecutor: base,
tblID2Table: tblID2table,
IsMultiTable: v.IsMultiTable,
tblColPosInfos: v.TblColPosInfos,
}
return deleteExec
}
// updateForUpdateTSIfNeeded updates the ForUpdateTS for a pessimistic transaction if needed.
// PointGet executor will get conflict error if the ForUpdateTS is older than the latest commitTS,
// so we don't need to update now for better latency.
func (b *executorBuilder) updateForUpdateTSIfNeeded(selectPlan plannercore.PhysicalPlan) error {
txnCtx := b.ctx.GetSessionVars().TxnCtx
if !txnCtx.IsPessimistic {
return nil
}
if _, ok := selectPlan.(*plannercore.PointGetPlan); ok {
return nil
}
// Activate the invalid txn, use the txn startTS as newForUpdateTS
txn, err := b.ctx.Txn(false)
if err != nil {
return err
}
if !txn.Valid() {
_, err := b.ctx.Txn(true)
if err != nil {
return err
}
return nil
}
// The Repeatable Read transaction use Read Committed level to read data for writing (insert, update, delete, select for update),
// We should always update/refresh the for-update-ts no matter the isolation level is RR or RC.
if b.ctx.GetSessionVars().IsPessimisticReadConsistency() {
return b.refreshForUpdateTSForRC()
}
return UpdateForUpdateTS(b.ctx, 0)
}
// refreshForUpdateTSForRC is used to refresh the for-update-ts for reading data at read consistency level in pessimistic transaction.
// It could use the cached tso from the statement future to avoid get tso many times.
func (b *executorBuilder) refreshForUpdateTSForRC() error {
defer func() {
b.snapshotTS = b.ctx.GetSessionVars().TxnCtx.GetForUpdateTS()
}()
future := b.ctx.GetSessionVars().TxnCtx.GetStmtFutureForRC()
if future == nil {
return nil
}
newForUpdateTS, waitErr := future.Wait()
if waitErr != nil {
logutil.BgLogger().Warn("wait tso failed",
zap.Uint64("startTS", b.ctx.GetSessionVars().TxnCtx.StartTS),
zap.Error(waitErr))
}
b.ctx.GetSessionVars().TxnCtx.SetStmtFutureForRC(nil)
// If newForUpdateTS is 0, it will force to get a new for-update-ts from PD.
return UpdateForUpdateTS(b.ctx, newForUpdateTS)
}
func (b *executorBuilder) buildAnalyzeIndexPushdown(task plannercore.AnalyzeIndexTask, opts map[ast.AnalyzeOptionType]uint64, autoAnalyze string) *analyzeTask {
_, offset := timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
e := &AnalyzeIndexExec{
ctx: b.ctx,
physicalTableID: task.PhysicalTableID,
idxInfo: task.IndexInfo,
concurrency: b.ctx.GetSessionVars().IndexSerialScanConcurrency,
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeIndex,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
opts: opts,
}
e.analyzePB.IdxReq = &tipb.AnalyzeIndexReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
NumColumns: int32(len(task.IndexInfo.Columns)),
}
depth := int32(opts[ast.AnalyzeOptCMSketchDepth])
width := int32(opts[ast.AnalyzeOptCMSketchWidth])
e.analyzePB.IdxReq.CmsketchDepth = &depth
e.analyzePB.IdxReq.CmsketchWidth = &width
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: autoAnalyze + "analyze index " + task.IndexInfo.Name.O}
return &analyzeTask{taskType: idxTask, idxExec: e, job: job}
}
func (b *executorBuilder) buildAnalyzeIndexIncremental(task plannercore.AnalyzeIndexTask, opts map[ast.AnalyzeOptionType]uint64) *analyzeTask {
h := domain.GetDomain(b.ctx).StatsHandle()
statsTbl := h.GetPartitionStats(&model.TableInfo{}, task.PhysicalTableID)
analyzeTask := b.buildAnalyzeIndexPushdown(task, opts, "")
if statsTbl.Pseudo {
return analyzeTask
}
idx, ok := statsTbl.Indices[task.IndexInfo.ID]
if !ok || idx.Len() == 0 || idx.LastAnalyzePos.IsNull() {
return analyzeTask
}
var oldHist *statistics.Histogram
if statistics.IsAnalyzed(idx.Flag) {
exec := analyzeTask.idxExec
if idx.CMSketch != nil {
width, depth := idx.CMSketch.GetWidthAndDepth()
exec.analyzePB.IdxReq.CmsketchWidth = &width
exec.analyzePB.IdxReq.CmsketchDepth = &depth
}
oldHist = idx.Histogram.Copy()
} else {
_, bktID := idx.LessRowCountWithBktIdx(idx.LastAnalyzePos)
if bktID == 0 {
return analyzeTask
}
oldHist = idx.TruncateHistogram(bktID)
}
oldHist = oldHist.RemoveUpperBound()
analyzeTask.taskType = idxIncrementalTask
analyzeTask.idxIncrementalExec = &analyzeIndexIncrementalExec{AnalyzeIndexExec: *analyzeTask.idxExec, oldHist: oldHist, oldCMS: idx.CMSketch}
analyzeTask.job = &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: "analyze incremental index " + task.IndexInfo.Name.O}
return analyzeTask
}
func (b *executorBuilder) buildAnalyzeColumnsPushdown(task plannercore.AnalyzeColumnsTask, opts map[ast.AnalyzeOptionType]uint64, autoAnalyze string) *analyzeTask {
cols := task.ColsInfo
if task.PKInfo != nil {
cols = append([]*model.ColumnInfo{task.PKInfo}, cols...)
}
_, offset := timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
e := &AnalyzeColumnsExec{
ctx: b.ctx,
physicalTableID: task.PhysicalTableID,
colsInfo: task.ColsInfo,
pkInfo: task.PKInfo,
concurrency: b.ctx.GetSessionVars().DistSQLScanConcurrency,
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeColumn,
Flags: sc.PushDownFlags(),
TimeZoneOffset: offset,
},
opts: opts,
}
depth := int32(opts[ast.AnalyzeOptCMSketchDepth])
width := int32(opts[ast.AnalyzeOptCMSketchWidth])
e.analyzePB.ColReq = &tipb.AnalyzeColumnsReq{
BucketSize: int64(opts[ast.AnalyzeOptNumBuckets]),
SampleSize: maxRegionSampleSize,
SketchSize: maxSketchSize,
ColumnsInfo: util.ColumnsToProto(cols, task.PKInfo != nil),
CmsketchDepth: &depth,
CmsketchWidth: &width,
}
b.err = plannercore.SetPBColumnsDefaultValue(b.ctx, e.analyzePB.ColReq.ColumnsInfo, cols)
job := &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: autoAnalyze + "analyze columns"}
return &analyzeTask{taskType: colTask, colExec: e, job: job}
}
func (b *executorBuilder) buildAnalyzePKIncremental(task plannercore.AnalyzeColumnsTask, opts map[ast.AnalyzeOptionType]uint64) *analyzeTask {
h := domain.GetDomain(b.ctx).StatsHandle()
statsTbl := h.GetPartitionStats(&model.TableInfo{}, task.PhysicalTableID)
analyzeTask := b.buildAnalyzeColumnsPushdown(task, opts, "")
if statsTbl.Pseudo {
return analyzeTask
}
col, ok := statsTbl.Columns[task.PKInfo.ID]
if !ok || col.Len() == 0 || col.LastAnalyzePos.IsNull() {
return analyzeTask
}
var oldHist *statistics.Histogram
if statistics.IsAnalyzed(col.Flag) {
oldHist = col.Histogram.Copy()
} else {
d, err := col.LastAnalyzePos.ConvertTo(b.ctx.GetSessionVars().StmtCtx, col.Tp)
if err != nil {
b.err = err
return nil
}
_, bktID := col.LessRowCountWithBktIdx(d)
if bktID == 0 {
return analyzeTask
}
oldHist = col.TruncateHistogram(bktID)
oldHist.NDV = int64(oldHist.TotalRowCount())
}
exec := analyzeTask.colExec
analyzeTask.taskType = pkIncrementalTask
analyzeTask.colIncrementalExec = &analyzePKIncrementalExec{AnalyzeColumnsExec: *exec, oldHist: oldHist}
analyzeTask.job = &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: "analyze incremental primary key"}
return analyzeTask
}
func (b *executorBuilder) buildAnalyzeFastColumn(e *AnalyzeExec, task plannercore.AnalyzeColumnsTask, opts map[ast.AnalyzeOptionType]uint64) {
findTask := false
for _, eTask := range e.tasks {
if eTask.fastExec.physicalTableID == task.PhysicalTableID {
eTask.fastExec.colsInfo = append(eTask.fastExec.colsInfo, task.ColsInfo...)
findTask = true
break
}
}
if !findTask {
var concurrency int
concurrency, b.err = getBuildStatsConcurrency(e.ctx)
if b.err != nil {
return
}
e.tasks = append(e.tasks, &analyzeTask{
taskType: fastTask,
fastExec: &AnalyzeFastExec{
ctx: b.ctx,
physicalTableID: task.PhysicalTableID,
colsInfo: task.ColsInfo,
pkInfo: task.PKInfo,
opts: opts,
tblInfo: task.TblInfo,
concurrency: concurrency,
wg: &sync.WaitGroup{},
},
job: &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: task.PartitionName, JobInfo: "fast analyze columns"},
})
}
}
func (b *executorBuilder) buildAnalyzeFastIndex(e *AnalyzeExec, task plannercore.AnalyzeIndexTask, opts map[ast.AnalyzeOptionType]uint64) {
findTask := false
for _, eTask := range e.tasks {
if eTask.fastExec.physicalTableID == task.PhysicalTableID {
eTask.fastExec.idxsInfo = append(eTask.fastExec.idxsInfo, task.IndexInfo)
findTask = true
break
}
}
if !findTask {
var concurrency int
concurrency, b.err = getBuildStatsConcurrency(e.ctx)
if b.err != nil {
return
}
e.tasks = append(e.tasks, &analyzeTask{
taskType: fastTask,
fastExec: &AnalyzeFastExec{
ctx: b.ctx,
physicalTableID: task.PhysicalTableID,
idxsInfo: []*model.IndexInfo{task.IndexInfo},
opts: opts,
tblInfo: task.TblInfo,
concurrency: concurrency,
wg: &sync.WaitGroup{},
},
job: &statistics.AnalyzeJob{DBName: task.DBName, TableName: task.TableName, PartitionName: "fast analyze index " + task.IndexInfo.Name.O},
})
}
}
func (b *executorBuilder) buildAnalyze(v *plannercore.Analyze) Executor {
e := &AnalyzeExec{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
tasks: make([]*analyzeTask, 0, len(v.ColTasks)+len(v.IdxTasks)),
wg: &sync.WaitGroup{},
}
enableFastAnalyze := b.ctx.GetSessionVars().EnableFastAnalyze
autoAnalyze := ""
if b.ctx.GetSessionVars().InRestrictedSQL {
autoAnalyze = "auto "
}
for _, task := range v.ColTasks {
if task.Incremental {
e.tasks = append(e.tasks, b.buildAnalyzePKIncremental(task, v.Opts))
} else {
if enableFastAnalyze {
b.buildAnalyzeFastColumn(e, task, v.Opts)
} else {
e.tasks = append(e.tasks, b.buildAnalyzeColumnsPushdown(task, v.Opts, autoAnalyze))
}
}
if b.err != nil {
return nil
}
}
for _, task := range v.IdxTasks {
if task.Incremental {
e.tasks = append(e.tasks, b.buildAnalyzeIndexIncremental(task, v.Opts))
} else {
if enableFastAnalyze {
b.buildAnalyzeFastIndex(e, task, v.Opts)
} else {
e.tasks = append(e.tasks, b.buildAnalyzeIndexPushdown(task, v.Opts, autoAnalyze))
}
}
if b.err != nil {
return nil
}
}
return e
}
func constructDistExec(sctx sessionctx.Context, plans []plannercore.PhysicalPlan) ([]*tipb.Executor, bool, error) {
streaming := true
executors := make([]*tipb.Executor, 0, len(plans))
for _, p := range plans {
execPB, err := p.ToPB(sctx, kv.TiKV)
if err != nil {
return nil, false, err
}
if !plannercore.SupportStreaming(p) {
streaming = false
}
executors = append(executors, execPB)
}
return executors, streaming, nil
}
// markChildrenUsedCols compares each child with the output schema, and mark
// each column of the child is used by output or not.
func markChildrenUsedCols(outputSchema *expression.Schema, childSchema ...*expression.Schema) (childrenUsed [][]bool) {
for _, child := range childSchema {
used := expression.GetUsedList(outputSchema.Columns, child)
childrenUsed = append(childrenUsed, used)
}
return
}
func constructDistExecForTiFlash(sctx sessionctx.Context, p plannercore.PhysicalPlan) ([]*tipb.Executor, bool, error) {
execPB, err := p.ToPB(sctx, kv.TiFlash)
return []*tipb.Executor{execPB}, false, err
}
func (b *executorBuilder) constructDAGReq(plans []plannercore.PhysicalPlan, storeType kv.StoreType) (dagReq *tipb.DAGRequest, streaming bool, err error) {
dagReq = &tipb.DAGRequest{}
dagReq.TimeZoneName, dagReq.TimeZoneOffset = timeutil.Zone(b.ctx.GetSessionVars().Location())
sc := b.ctx.GetSessionVars().StmtCtx
if sc.RuntimeStatsColl != nil {
collExec := true
dagReq.CollectExecutionSummaries = &collExec
}
dagReq.Flags = sc.PushDownFlags()
if storeType == kv.TiFlash {
var executors []*tipb.Executor
executors, streaming, err = constructDistExecForTiFlash(b.ctx, plans[0])
dagReq.RootExecutor = executors[0]
} else {
dagReq.Executors, streaming, err = constructDistExec(b.ctx, plans)
}
distsql.SetEncodeType(b.ctx, dagReq)
return dagReq, streaming, err
}
func (b *executorBuilder) corColInDistPlan(plans []plannercore.PhysicalPlan) bool {
for _, p := range plans {
x, ok := p.(*plannercore.PhysicalSelection)
if !ok {
continue
}
for _, cond := range x.Conditions {
if len(expression.ExtractCorColumns(cond)) > 0 {
return true
}
}
}
return false
}
// corColInAccess checks whether there's correlated column in access conditions.
func (b *executorBuilder) corColInAccess(p plannercore.PhysicalPlan) bool {
var access []expression.Expression
switch x := p.(type) {
case *plannercore.PhysicalTableScan:
access = x.AccessCondition
case *plannercore.PhysicalIndexScan:
access = x.AccessCondition
}
for _, cond := range access {
if len(expression.ExtractCorColumns(cond)) > 0 {
return true
}
}
return false
}
func (b *executorBuilder) buildIndexLookUpJoin(v *plannercore.PhysicalIndexJoin) Executor {
outerExec := b.build(v.Children()[1-v.InnerChildIdx])
if b.err != nil {
return nil
}
outerTypes := retTypes(outerExec)
innerPlan := v.Children()[v.InnerChildIdx]
innerTypes := make([]*types.FieldType, innerPlan.Schema().Len())
for i, col := range innerPlan.Schema().Columns {
innerTypes[i] = col.RetType.Clone()
// The `innerTypes` would be called for `Datum.ConvertTo` when converting the columns from outer table
// to build hash map or construct lookup keys. So we need to modify its Flen otherwise there would be
// truncate error. See issue https://github.com/pingcap/tidb/issues/21232 for example.
if innerTypes[i].EvalType() == types.ETString {
innerTypes[i].Flen = types.UnspecifiedLength
}
}
var (
outerFilter []expression.Expression
leftTypes, rightTypes []*types.FieldType
)
if v.InnerChildIdx == 0 {
leftTypes, rightTypes = innerTypes, outerTypes
outerFilter = v.RightConditions
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
leftTypes, rightTypes = outerTypes, innerTypes
outerFilter = v.LeftConditions
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, len(innerTypes))
}
hasPrefixCol := false
for _, l := range v.IdxColLens {
if l != types.UnspecifiedLength {
hasPrefixCol = true
break
}
}
e := &IndexLookUpJoin{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec),
outerCtx: outerCtx{
rowTypes: outerTypes,
filter: outerFilter,
},
innerCtx: innerCtx{
readerBuilder: &dataReaderBuilder{Plan: innerPlan, executorBuilder: b},
rowTypes: innerTypes,
colLens: v.IdxColLens,
hasPrefixCol: hasPrefixCol,
},
workerWg: new(sync.WaitGroup),
isOuterJoin: v.JoinType.IsOuterJoin(),
indexRanges: v.Ranges,
keyOff2IdxOff: v.KeyOff2IdxOff,
lastColHelper: v.CompareFilters,
}
childrenUsedSchema := markChildrenUsedCols(v.Schema(), v.Children()[0].Schema(), v.Children()[1].Schema())
e.joiner = newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues, v.OtherConditions, leftTypes, rightTypes, childrenUsedSchema)
outerKeyCols := make([]int, len(v.OuterJoinKeys))
for i := 0; i < len(v.OuterJoinKeys); i++ {
outerKeyCols[i] = v.OuterJoinKeys[i].Index
}
innerKeyCols := make([]int, len(v.InnerJoinKeys))
for i := 0; i < len(v.InnerJoinKeys); i++ {
innerKeyCols[i] = v.InnerJoinKeys[i].Index
}
e.outerCtx.keyCols = outerKeyCols
e.innerCtx.keyCols = innerKeyCols
outerHashCols, innerHashCols := make([]int, len(v.OuterHashKeys)), make([]int, len(v.InnerHashKeys))
for i := 0; i < len(v.OuterHashKeys); i++ {
outerHashCols[i] = v.OuterHashKeys[i].Index
}
for i := 0; i < len(v.InnerHashKeys); i++ {
innerHashCols[i] = v.InnerHashKeys[i].Index
}
e.outerCtx.hashCols = outerHashCols
e.innerCtx.hashCols = innerHashCols
e.joinResult = newFirstChunk(e)
executorCounterIndexLookUpJoin.Inc()
return e
}
func (b *executorBuilder) buildIndexLookUpMergeJoin(v *plannercore.PhysicalIndexMergeJoin) Executor {
outerExec := b.build(v.Children()[1-v.InnerChildIdx])
if b.err != nil {
return nil
}
outerTypes := retTypes(outerExec)
innerPlan := v.Children()[v.InnerChildIdx]
innerTypes := make([]*types.FieldType, innerPlan.Schema().Len())
for i, col := range innerPlan.Schema().Columns {
innerTypes[i] = col.RetType.Clone()
// The `innerTypes` would be called for `Datum.ConvertTo` when converting the columns from outer table
// to build hash map or construct lookup keys. So we need to modify its Flen otherwise there would be
// truncate error. See issue https://github.com/pingcap/tidb/issues/21232 for example.
if innerTypes[i].EvalType() == types.ETString {
innerTypes[i].Flen = types.UnspecifiedLength
}
}
var (
outerFilter []expression.Expression
leftTypes, rightTypes []*types.FieldType
)
if v.InnerChildIdx == 0 {
leftTypes, rightTypes = innerTypes, outerTypes
outerFilter = v.RightConditions
if len(v.LeftConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
} else {
leftTypes, rightTypes = outerTypes, innerTypes
outerFilter = v.LeftConditions
if len(v.RightConditions) > 0 {
b.err = errors.Annotate(ErrBuildExecutor, "join's inner condition should be empty")
return nil
}
}
defaultValues := v.DefaultValues
if defaultValues == nil {
defaultValues = make([]types.Datum, len(innerTypes))
}
outerKeyCols := make([]int, len(v.OuterJoinKeys))
for i := 0; i < len(v.OuterJoinKeys); i++ {
outerKeyCols[i] = v.OuterJoinKeys[i].Index
}
innerKeyCols := make([]int, len(v.InnerJoinKeys))
for i := 0; i < len(v.InnerJoinKeys); i++ {
innerKeyCols[i] = v.InnerJoinKeys[i].Index
}
executorCounterIndexLookUpJoin.Inc()
e := &IndexLookUpMergeJoin{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID(), outerExec),
outerMergeCtx: outerMergeCtx{
rowTypes: outerTypes,
filter: outerFilter,
joinKeys: v.OuterJoinKeys,
keyCols: outerKeyCols,
needOuterSort: v.NeedOuterSort,
compareFuncs: v.OuterCompareFuncs,
},
innerMergeCtx: innerMergeCtx{
readerBuilder: &dataReaderBuilder{Plan: innerPlan, executorBuilder: b},
rowTypes: innerTypes,
joinKeys: v.InnerJoinKeys,
keyCols: innerKeyCols,
compareFuncs: v.CompareFuncs,
colLens: v.IdxColLens,
desc: v.Desc,
keyOff2KeyOffOrderByIdx: v.KeyOff2KeyOffOrderByIdx,
},
workerWg: new(sync.WaitGroup),
isOuterJoin: v.JoinType.IsOuterJoin(),
indexRanges: v.Ranges,
keyOff2IdxOff: v.KeyOff2IdxOff,
lastColHelper: v.CompareFilters,
}
childrenUsedSchema := markChildrenUsedCols(v.Schema(), v.Children()[0].Schema(), v.Children()[1].Schema())
joiners := make([]joiner, e.ctx.GetSessionVars().IndexLookupJoinConcurrency)
for i := 0; i < e.ctx.GetSessionVars().IndexLookupJoinConcurrency; i++ {
joiners[i] = newJoiner(b.ctx, v.JoinType, v.InnerChildIdx == 0, defaultValues, v.OtherConditions, leftTypes, rightTypes, childrenUsedSchema)
}
e.joiners = joiners
return e
}
func (b *executorBuilder) buildIndexNestedLoopHashJoin(v *plannercore.PhysicalIndexHashJoin) Executor {
e := b.buildIndexLookUpJoin(&(v.PhysicalIndexJoin)).(*IndexLookUpJoin)
idxHash := &IndexNestedLoopHashJoin{
IndexLookUpJoin: *e,
keepOuterOrder: v.KeepOuterOrder,
}
concurrency := e.ctx.GetSessionVars().IndexLookupJoinConcurrency
idxHash.joiners = make([]joiner, concurrency)
for i := 0; i < concurrency; i++ {
idxHash.joiners[i] = e.joiner.Clone()
}
return idxHash
}
// containsLimit tests if the execs contains Limit because we do not know whether `Limit` has consumed all of its' source,
// so the feedback may not be accurate.
func containsLimit(execs []*tipb.Executor) bool {
for _, exec := range execs {
if exec.Limit != nil {
return true
}
}
return false
}
// When allow batch cop is 1, only agg / topN uses batch cop.
// When allow batch cop is 2, every query uses batch cop.
func (e *TableReaderExecutor) setBatchCop(v *plannercore.PhysicalTableReader) {
if e.storeType != kv.TiFlash || e.keepOrder {
return
}
switch e.ctx.GetSessionVars().AllowBatchCop {
case 1:
for _, p := range v.TablePlans {
switch p.(type) {
case *plannercore.PhysicalHashAgg, *plannercore.PhysicalStreamAgg, *plannercore.PhysicalTopN, *plannercore.PhysicalBroadCastJoin:
e.batchCop = true
}
}
case 2:
e.batchCop = true
}
return
}
func buildNoRangeTableReader(b *executorBuilder, v *plannercore.PhysicalTableReader) (*TableReaderExecutor, error) {
tablePlans := v.TablePlans
if v.StoreType == kv.TiFlash {
tablePlans = []plannercore.PhysicalPlan{v.GetTablePlan()}
}
dagReq, streaming, err := b.constructDAGReq(tablePlans, v.StoreType)
if err != nil {
return nil, err
}
ts := v.GetTableScan()
tbl, _ := b.is.TableByID(ts.Table.ID)
isPartition, physicalTableID := ts.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
e := &TableReaderExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dagPB: dagReq,
startTS: startTS,
table: tbl,
keepOrder: ts.KeepOrder,
desc: ts.Desc,
columns: ts.Columns,
streaming: streaming,
corColInFilter: b.corColInDistPlan(v.TablePlans),
corColInAccess: b.corColInAccess(v.TablePlans[0]),
plans: v.TablePlans,
tablePlan: v.GetTablePlan(),
storeType: v.StoreType,
}
e.setBatchCop(v)
e.buildVirtualColumnInfo()
if containsLimit(dagReq.Executors) {
e.feedback = statistics.NewQueryFeedback(0, nil, 0, ts.Desc)
} else {
e.feedback = statistics.NewQueryFeedback(getPhysicalTableID(tbl), ts.Hist, int64(ts.StatsCount()), ts.Desc)
}
collect := statistics.CollectFeedback(b.ctx.GetSessionVars().StmtCtx, e.feedback, len(ts.Ranges))
if !collect {
e.feedback.Invalidate()
}
e.dagPB.CollectRangeCounts = &collect
if v.StoreType == kv.TiDB && b.ctx.GetSessionVars().User != nil {
// User info is used to do privilege check. It is only used in TiDB cluster memory table.
e.dagPB.User = &tipb.UserIdentity{
UserName: b.ctx.GetSessionVars().User.Username,
UserHost: b.ctx.GetSessionVars().User.Hostname,
}
}
for i := range v.Schema().Columns {
dagReq.OutputOffsets = append(dagReq.OutputOffsets, uint32(i))
}
return e, nil
}
// buildTableReader builds a table reader executor. It first build a no range table reader,
// and then update it ranges from table scan plan.
func (b *executorBuilder) buildTableReader(v *plannercore.PhysicalTableReader) *TableReaderExecutor {
ret, err := buildNoRangeTableReader(b, v)
if err != nil {
b.err = err
return nil
}
ts := v.GetTableScan()
ret.ranges = ts.Ranges
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
return ret
}
func buildNoRangeIndexReader(b *executorBuilder, v *plannercore.PhysicalIndexReader) (*IndexReaderExecutor, error) {
dagReq, streaming, err := b.constructDAGReq(v.IndexPlans, kv.TiKV)
if err != nil {
return nil, err
}
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
tbl, _ := b.is.TableByID(is.Table.ID)
isPartition, physicalTableID := is.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
} else {
physicalTableID = is.Table.ID
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
e := &IndexReaderExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dagPB: dagReq,
startTS: startTS,
physicalTableID: physicalTableID,
table: tbl,
index: is.Index,
keepOrder: is.KeepOrder,
desc: is.Desc,
columns: is.Columns,
streaming: streaming,
corColInFilter: b.corColInDistPlan(v.IndexPlans),
corColInAccess: b.corColInAccess(v.IndexPlans[0]),
idxCols: is.IdxCols,
colLens: is.IdxColLens,
plans: v.IndexPlans,
outputColumns: v.OutputColumns,
}
if containsLimit(dagReq.Executors) {
e.feedback = statistics.NewQueryFeedback(0, nil, 0, is.Desc)
} else {
e.feedback = statistics.NewQueryFeedback(e.physicalTableID, is.Hist, int64(is.StatsCount()), is.Desc)
}
collect := statistics.CollectFeedback(b.ctx.GetSessionVars().StmtCtx, e.feedback, len(is.Ranges))
if !collect {
e.feedback.Invalidate()
}
e.dagPB.CollectRangeCounts = &collect
for _, col := range v.OutputColumns {
dagReq.OutputOffsets = append(dagReq.OutputOffsets, uint32(col.Index))
}
return e, nil
}
func (b *executorBuilder) buildIndexReader(v *plannercore.PhysicalIndexReader) *IndexReaderExecutor {
ret, err := buildNoRangeIndexReader(b, v)
if err != nil {
b.err = err
return nil
}
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
ret.ranges = is.Ranges
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
return ret
}
func buildTableReq(b *executorBuilder, schemaLen int, plans []plannercore.PhysicalPlan) (dagReq *tipb.DAGRequest, streaming bool, val table.Table, err error) {
tableReq, tableStreaming, err := b.constructDAGReq(plans, kv.TiKV)
if err != nil {
return nil, false, nil, err
}
for i := 0; i < schemaLen; i++ {
tableReq.OutputOffsets = append(tableReq.OutputOffsets, uint32(i))
}
ts := plans[0].(*plannercore.PhysicalTableScan)
tbl, _ := b.is.TableByID(ts.Table.ID)
isPartition, physicalTableID := ts.IsPartition()
if isPartition {
pt := tbl.(table.PartitionedTable)
tbl = pt.GetPartition(physicalTableID)
}
return tableReq, tableStreaming, tbl, err
}
func buildIndexReq(b *executorBuilder, schemaLen int, plans []plannercore.PhysicalPlan) (dagReq *tipb.DAGRequest, streaming bool, err error) {
indexReq, indexStreaming, err := b.constructDAGReq(plans, kv.TiKV)
if err != nil {
return nil, false, err
}
indexReq.OutputOffsets = []uint32{uint32(schemaLen)}
return indexReq, indexStreaming, err
}
func buildNoRangeIndexLookUpReader(b *executorBuilder, v *plannercore.PhysicalIndexLookUpReader) (*IndexLookUpExecutor, error) {
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
indexReq, indexStreaming, err := buildIndexReq(b, len(is.Index.Columns), v.IndexPlans)
if err != nil {
return nil, err
}
tableReq, tableStreaming, tbl, err := buildTableReq(b, v.Schema().Len(), v.TablePlans)
if err != nil {
return nil, err
}
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
e := &IndexLookUpExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dagPB: indexReq,
startTS: startTS,
table: tbl,
index: is.Index,
keepOrder: is.KeepOrder,
desc: is.Desc,
tableRequest: tableReq,
columns: ts.Columns,
indexStreaming: indexStreaming,
tableStreaming: tableStreaming,
dataReaderBuilder: &dataReaderBuilder{executorBuilder: b},
corColInIdxSide: b.corColInDistPlan(v.IndexPlans),
corColInTblSide: b.corColInDistPlan(v.TablePlans),
corColInAccess: b.corColInAccess(v.IndexPlans[0]),
idxCols: is.IdxCols,
colLens: is.IdxColLens,
idxPlans: v.IndexPlans,
tblPlans: v.TablePlans,
PushedLimit: v.PushedLimit,
}
if containsLimit(indexReq.Executors) {
e.feedback = statistics.NewQueryFeedback(0, nil, 0, is.Desc)
} else {
e.feedback = statistics.NewQueryFeedback(getPhysicalTableID(tbl), is.Hist, int64(is.StatsCount()), is.Desc)
}
// Do not collect the feedback for table request.
collectTable := false
e.tableRequest.CollectRangeCounts = &collectTable
collectIndex := statistics.CollectFeedback(b.ctx.GetSessionVars().StmtCtx, e.feedback, len(is.Ranges))
if !collectIndex {
e.feedback.Invalidate()
}
e.dagPB.CollectRangeCounts = &collectIndex
if v.ExtraHandleCol != nil {
e.handleIdx = v.ExtraHandleCol.Index
}
return e, nil
}
func (b *executorBuilder) buildIndexLookUpReader(v *plannercore.PhysicalIndexLookUpReader) *IndexLookUpExecutor {
ret, err := buildNoRangeIndexLookUpReader(b, v)
if err != nil {
b.err = err
return nil
}
is := v.IndexPlans[0].(*plannercore.PhysicalIndexScan)
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
ret.ranges = is.Ranges
executorCounterIndexLookUpExecutor.Inc()
sctx := b.ctx.GetSessionVars().StmtCtx
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
return ret
}
func buildNoRangeIndexMergeReader(b *executorBuilder, v *plannercore.PhysicalIndexMergeReader) (*IndexMergeReaderExecutor, error) {
partialPlanCount := len(v.PartialPlans)
partialReqs := make([]*tipb.DAGRequest, 0, partialPlanCount)
partialStreamings := make([]bool, 0, partialPlanCount)
indexes := make([]*model.IndexInfo, 0, partialPlanCount)
keepOrders := make([]bool, 0, partialPlanCount)
descs := make([]bool, 0, partialPlanCount)
feedbacks := make([]*statistics.QueryFeedback, 0, partialPlanCount)
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
for i := 0; i < partialPlanCount; i++ {
var tempReq *tipb.DAGRequest
var tempStreaming bool
var err error
feedback := statistics.NewQueryFeedback(0, nil, 0, ts.Desc)
feedback.Invalidate()
feedbacks = append(feedbacks, feedback)
if is, ok := v.PartialPlans[i][0].(*plannercore.PhysicalIndexScan); ok {
tempReq, tempStreaming, err = buildIndexReq(b, len(is.Index.Columns), v.PartialPlans[i])
keepOrders = append(keepOrders, is.KeepOrder)
descs = append(descs, is.Desc)
indexes = append(indexes, is.Index)
} else {
ts := v.PartialPlans[i][0].(*plannercore.PhysicalTableScan)
tempReq, tempStreaming, _, err = buildTableReq(b, len(ts.Columns), v.PartialPlans[i])
keepOrders = append(keepOrders, ts.KeepOrder)
descs = append(descs, ts.Desc)
indexes = append(indexes, nil)
}
if err != nil {
return nil, err
}
collect := false
tempReq.CollectRangeCounts = &collect
partialReqs = append(partialReqs, tempReq)
partialStreamings = append(partialStreamings, tempStreaming)
}
tableReq, tableStreaming, table, err := buildTableReq(b, v.Schema().Len(), v.TablePlans)
if err != nil {
return nil, err
}
startTS, err := b.getSnapshotTS()
if err != nil {
return nil, err
}
e := &IndexMergeReaderExecutor{
baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID()),
dagPBs: partialReqs,
startTS: startTS,
table: table,
indexes: indexes,
descs: descs,
tableRequest: tableReq,
columns: ts.Columns,
partialStreamings: partialStreamings,
tableStreaming: tableStreaming,
partialPlans: v.PartialPlans,
tblPlans: v.TablePlans,
dataReaderBuilder: &dataReaderBuilder{executorBuilder: b},
feedbacks: feedbacks,
}
collectTable := false
e.tableRequest.CollectRangeCounts = &collectTable
return e, nil
}
func (b *executorBuilder) buildIndexMergeReader(v *plannercore.PhysicalIndexMergeReader) *IndexMergeReaderExecutor {
ret, err := buildNoRangeIndexMergeReader(b, v)
if err != nil {
b.err = err
return nil
}
ret.ranges = make([][]*ranger.Range, 0, len(v.PartialPlans))
sctx := b.ctx.GetSessionVars().StmtCtx
for i := 0; i < len(v.PartialPlans); i++ {
if is, ok := v.PartialPlans[i][0].(*plannercore.PhysicalIndexScan); ok {
ret.ranges = append(ret.ranges, is.Ranges)
sctx.IndexNames = append(sctx.IndexNames, is.Table.Name.O+":"+is.Index.Name.O)
} else {
ret.ranges = append(ret.ranges, v.PartialPlans[i][0].(*plannercore.PhysicalTableScan).Ranges)
}
}
ts := v.TablePlans[0].(*plannercore.PhysicalTableScan)
sctx.TableIDs = append(sctx.TableIDs, ts.Table.ID)
executorCounterIndexMergeReaderExecutor.Inc()
return ret
}
// dataReaderBuilder build an executor.
// The executor can be used to read data in the ranges which are constructed by datums.
// Differences from executorBuilder:
// 1. dataReaderBuilder calculate data range from argument, rather than plan.
// 2. the result executor is already opened.
type dataReaderBuilder struct {
plannercore.Plan
*executorBuilder
selectResultHook // for testing
}
type mockPhysicalIndexReader struct {
plannercore.PhysicalPlan
e Executor
}
func (builder *dataReaderBuilder) buildExecutorForIndexJoin(ctx context.Context, lookUpContents []*indexJoinLookUpContent,
IndexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool) (Executor, error) {
return builder.buildExecutorForIndexJoinInternal(ctx, builder.Plan, lookUpContents, IndexRanges, keyOff2IdxOff, cwc, canReorderHandles)
}
func (builder *dataReaderBuilder) buildExecutorForIndexJoinInternal(ctx context.Context, plan plannercore.Plan, lookUpContents []*indexJoinLookUpContent,
IndexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager, canReorderHandles bool) (Executor, error) {
switch v := plan.(type) {
case *plannercore.PhysicalTableReader:
return builder.buildTableReaderForIndexJoin(ctx, v, lookUpContents, canReorderHandles)
case *plannercore.PhysicalIndexReader:
return builder.buildIndexReaderForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc)
case *plannercore.PhysicalIndexLookUpReader:
return builder.buildIndexLookUpReaderForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc)
case *plannercore.PhysicalUnionScan:
return builder.buildUnionScanForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc)
// The inner child of IndexJoin might be Projection when a combination of the following conditions is true:
// 1. The inner child fetch data using indexLookupReader
// 2. PK is not handle
// 3. The inner child needs to keep order
// In this case, an extra column tidb_rowid will be appended in the output result of IndexLookupReader(see copTask.doubleReadNeedProj).
// Then we need a Projection upon IndexLookupReader to prune the redundant column.
case *plannercore.PhysicalProjection:
return builder.buildProjectionForIndexJoin(ctx, v, lookUpContents, IndexRanges, keyOff2IdxOff, cwc)
// Need to support physical selection because after PR 16389, TiDB will push down all the expr supported by TiKV or TiFlash
// in predicate push down stage, so if there is an expr which only supported by TiFlash, a physical selection will be added after index read
case *plannercore.PhysicalSelection:
childExec, err := builder.buildExecutorForIndexJoinInternal(ctx, v.Children()[0], lookUpContents, IndexRanges, keyOff2IdxOff, cwc, canReorderHandles)
if err != nil {
return nil, err
}
exec := &SelectionExec{
baseExecutor: newBaseExecutor(builder.ctx, v.Schema(), v.ID(), childExec),
filters: v.Conditions,
}
err = exec.open(ctx)
return exec, err
case *mockPhysicalIndexReader:
return v.e, nil
}
return nil, errors.New("Wrong plan type for dataReaderBuilder")
}
func (builder *dataReaderBuilder) buildUnionScanForIndexJoin(ctx context.Context, v *plannercore.PhysicalUnionScan,
values []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) (Executor, error) {
childBuilder := &dataReaderBuilder{Plan: v.Children()[0], executorBuilder: builder.executorBuilder}
reader, err := childBuilder.buildExecutorForIndexJoin(ctx, values, indexRanges, keyOff2IdxOff, cwc, true)
if err != nil {
return nil, err
}
us := builder.buildUnionScanFromReader(reader, v).(*UnionScanExec)
err = us.open(ctx)
return us, err
}
func (builder *dataReaderBuilder) buildTableReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalTableReader, lookUpContents []*indexJoinLookUpContent, canReorderHandles bool) (Executor, error) {
e, err := buildNoRangeTableReader(builder.executorBuilder, v)
if err != nil {
return nil, err
}
handles := make([]int64, 0, len(lookUpContents))
var isValidHandle bool
for _, content := range lookUpContents {
handle := content.keys[0].GetInt64()
isValidHandle = true
for _, key := range content.keys {
if handle != key.GetInt64() {
isValidHandle = false
break
}
}
if isValidHandle {
handles = append(handles, handle)
}
}
return builder.buildTableReaderFromHandles(ctx, e, handles, canReorderHandles)
}
func (builder *dataReaderBuilder) buildTableReaderFromHandles(ctx context.Context, e *TableReaderExecutor, handles []int64, canReorderHandles bool) (Executor, error) {
startTS, err := builder.getSnapshotTS()
if err != nil {
return nil, err
}
if canReorderHandles {
sort.Sort(sortutil.Int64Slice(handles))
}
var b distsql.RequestBuilder
kvReq, err := b.SetTableHandles(getPhysicalTableID(e.table), handles).
SetDAGRequest(e.dagPB).
SetStartTS(startTS).
SetDesc(e.desc).
SetKeepOrder(e.keepOrder).
SetStreaming(e.streaming).
SetFromSessionVars(e.ctx.GetSessionVars()).
Build()
if err != nil {
return nil, err
}
e.kvRanges = append(e.kvRanges, kvReq.KeyRanges...)
e.resultHandler = &tableResultHandler{}
result, err := builder.SelectResult(ctx, builder.ctx, kvReq, retTypes(e), e.feedback, getPhysicalPlanIDs(e.plans), e.id)
if err != nil {
return nil, err
}
result.Fetch(ctx)
e.resultHandler.open(nil, result)
return e, nil
}
func (builder *dataReaderBuilder) buildIndexReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalIndexReader,
lookUpContents []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) (Executor, error) {
e, err := buildNoRangeIndexReader(builder.executorBuilder, v)
if err != nil {
return nil, err
}
kvRanges, err := buildKvRangesForIndexJoin(e.ctx, e.physicalTableID, e.index.ID, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
err = e.open(ctx, kvRanges)
return e, err
}
func (builder *dataReaderBuilder) buildIndexLookUpReaderForIndexJoin(ctx context.Context, v *plannercore.PhysicalIndexLookUpReader,
lookUpContents []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) (Executor, error) {
e, err := buildNoRangeIndexLookUpReader(builder.executorBuilder, v)
if err != nil {
return nil, err
}
e.kvRanges, err = buildKvRangesForIndexJoin(e.ctx, getPhysicalTableID(e.table), e.index.ID, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
err = e.open(ctx)
return e, err
}
func (builder *dataReaderBuilder) buildProjectionForIndexJoin(ctx context.Context, v *plannercore.PhysicalProjection,
lookUpContents []*indexJoinLookUpContent, indexRanges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) (Executor, error) {
physicalIndexLookUp, isDoubleRead := v.Children()[0].(*plannercore.PhysicalIndexLookUpReader)
if !isDoubleRead {
return nil, errors.Errorf("inner child of Projection should be IndexLookupReader, but got %T", v)
}
childExec, err := builder.buildIndexLookUpReaderForIndexJoin(ctx, physicalIndexLookUp, lookUpContents, indexRanges, keyOff2IdxOff, cwc)
if err != nil {
return nil, err
}
e := &ProjectionExec{
baseExecutor: newBaseExecutor(builder.ctx, v.Schema(), v.ID(), childExec),
numWorkers: builder.ctx.GetSessionVars().ProjectionConcurrency,
evaluatorSuit: expression.NewEvaluatorSuite(v.Exprs, v.AvoidColumnEvaluator),
calculateNoDelay: v.CalculateNoDelay,
}
// If the calculation row count for this Projection operator is smaller
// than a Chunk size, we turn back to the un-parallel Projection
// implementation to reduce the goroutine overhead.
if int64(v.StatsCount()) < int64(builder.ctx.GetSessionVars().MaxChunkSize) {
e.numWorkers = 0
}
err = e.open(ctx)
return e, err
}
// buildKvRangesForIndexJoin builds kv ranges for index join when the inner plan is index scan plan.
func buildKvRangesForIndexJoin(ctx sessionctx.Context, tableID, indexID int64, lookUpContents []*indexJoinLookUpContent,
ranges []*ranger.Range, keyOff2IdxOff []int, cwc *plannercore.ColWithCmpFuncManager) (_ []kv.KeyRange, err error) {
kvRanges := make([]kv.KeyRange, 0, len(ranges)*len(lookUpContents))
lastPos := len(ranges[0].LowVal) - 1
sc := ctx.GetSessionVars().StmtCtx
tmpDatumRanges := make([]*ranger.Range, 0, len(lookUpContents))
for _, content := range lookUpContents {
for _, ran := range ranges {
for keyOff, idxOff := range keyOff2IdxOff {
ran.LowVal[idxOff] = content.keys[keyOff]
ran.HighVal[idxOff] = content.keys[keyOff]
}
}
if cwc == nil {
tmpKvRanges, err := distsql.IndexRangesToKVRanges(sc, tableID, indexID, ranges, nil)
if err != nil {
return nil, err
}
kvRanges = append(kvRanges, tmpKvRanges...)
continue
}
nextColRanges, err := cwc.BuildRangesByRow(ctx, content.row)
if err != nil {
return nil, err
}
for _, nextColRan := range nextColRanges {
for _, ran := range ranges {
ran.LowVal[lastPos] = nextColRan.LowVal[0]
ran.HighVal[lastPos] = nextColRan.HighVal[0]
ran.LowExclude = nextColRan.LowExclude
ran.HighExclude = nextColRan.HighExclude
tmpDatumRanges = append(tmpDatumRanges, ran.Clone())
}
}
}
if cwc == nil {
sort.Slice(kvRanges, func(i, j int) bool {
return bytes.Compare(kvRanges[i].StartKey, kvRanges[j].StartKey) < 0
})
return kvRanges, nil
}
tmpDatumRanges, err = ranger.UnionRanges(ctx.GetSessionVars().StmtCtx, tmpDatumRanges)
if err != nil {
return nil, err
}
return distsql.IndexRangesToKVRanges(ctx.GetSessionVars().StmtCtx, tableID, indexID, tmpDatumRanges, nil)
}
func (b *executorBuilder) buildWindow(v *plannercore.PhysicalWindow) *WindowExec {
childExec := b.build(v.Children()[0])
if b.err != nil {
return nil
}
base := newBaseExecutor(b.ctx, v.Schema(), v.ID(), childExec)
groupByItems := make([]expression.Expression, 0, len(v.PartitionBy))
for _, item := range v.PartitionBy {
groupByItems = append(groupByItems, item.Col)
}
orderByCols := make([]*expression.Column, 0, len(v.OrderBy))
for _, item := range v.OrderBy {
orderByCols = append(orderByCols, item.Col)
}
windowFuncs := make([]aggfuncs.AggFunc, 0, len(v.WindowFuncDescs))
partialResults := make([]aggfuncs.PartialResult, 0, len(v.WindowFuncDescs))
resultColIdx := v.Schema().Len() - len(v.WindowFuncDescs)
for _, desc := range v.WindowFuncDescs {
aggDesc, err := aggregation.NewAggFuncDesc(b.ctx, desc.Name, desc.Args, false)
if err != nil {
b.err = err
return nil
}
agg := aggfuncs.BuildWindowFunctions(b.ctx, aggDesc, resultColIdx, orderByCols)
windowFuncs = append(windowFuncs, agg)
partialResults = append(partialResults, agg.AllocPartialResult())
resultColIdx++
}
var processor windowProcessor
if v.Frame == nil {
processor = &aggWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
}
} else if v.Frame.Type == ast.Rows {
processor = &rowFrameWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
start: v.Frame.Start,
end: v.Frame.End,
}
} else {
cmpResult := int64(-1)
if len(v.OrderBy) > 0 && v.OrderBy[0].Desc {
cmpResult = 1
}
processor = &rangeFrameWindowProcessor{
windowFuncs: windowFuncs,
partialResults: partialResults,
start: v.Frame.Start,
end: v.Frame.End,
orderByCols: orderByCols,
expectedCmpResult: cmpResult,
}
}
return &WindowExec{baseExecutor: base,
processor: processor,
groupChecker: newVecGroupChecker(b.ctx, groupByItems),
numWindowFuncs: len(v.WindowFuncDescs),
}
}
func (b *executorBuilder) buildShuffle(v *plannercore.PhysicalShuffle) *ShuffleExec {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
shuffle := &ShuffleExec{baseExecutor: base,
concurrency: v.Concurrency,
}
switch v.SplitterType {
case plannercore.PartitionHashSplitterType:
shuffle.splitter = &partitionHashSplitter{
byItems: v.HashByItems,
numWorkers: shuffle.concurrency,
}
default:
panic("Not implemented. Should not reach here.")
}
shuffle.dataSource = b.build(v.DataSource)
if b.err != nil {
return nil
}
// head & tail of physical plans' chain within "partition".
var head, tail plannercore.PhysicalPlan = v.Children()[0], v.Tail
shuffle.workers = make([]*shuffleWorker, shuffle.concurrency)
for i := range shuffle.workers {
w := &shuffleWorker{
baseExecutor: newBaseExecutor(b.ctx, v.DataSource.Schema(), v.DataSource.ID()),
}
stub := plannercore.PhysicalShuffleDataSourceStub{
Worker: (unsafe.Pointer)(w),
}.Init(b.ctx, v.DataSource.Stats(), v.DataSource.SelectBlockOffset(), nil)
stub.SetSchema(v.DataSource.Schema())
tail.SetChildren(stub)
w.childExec = b.build(head)
if b.err != nil {
return nil
}
shuffle.workers[i] = w
}
return shuffle
}
func (b *executorBuilder) buildShuffleDataSourceStub(v *plannercore.PhysicalShuffleDataSourceStub) *shuffleWorker {
return (*shuffleWorker)(v.Worker)
}
func (b *executorBuilder) buildSQLBindExec(v *plannercore.SQLBindPlan) Executor {
base := newBaseExecutor(b.ctx, v.Schema(), v.ID())
base.initCap = chunk.ZeroCapacity
e := &SQLBindExec{
baseExecutor: base,
sqlBindOp: v.SQLBindOp,
normdOrigSQL: v.NormdOrigSQL,
bindSQL: v.BindSQL,
charset: v.Charset,
collation: v.Collation,
db: v.Db,
isGlobal: v.IsGlobal,
bindAst: v.BindStmt,
}
return e
}
// NewRowDecoder creates a chunk decoder for new row format row value decode.
func NewRowDecoder(ctx sessionctx.Context, schema *expression.Schema, tbl *model.TableInfo) *rowcodec.ChunkDecoder {
getColInfoByID := func(tbl *model.TableInfo, colID int64) *model.ColumnInfo {
for _, col := range tbl.Columns {
if col.ID == colID {
return col
}
}
return nil
}
handleColID := int64(-1)
reqCols := make([]rowcodec.ColInfo, len(schema.Columns))
for i := range schema.Columns {
idx, col := i, schema.Columns[i]
isPK := (tbl.PKIsHandle && mysql.HasPriKeyFlag(col.RetType.Flag)) || col.ID == model.ExtraHandleID
if isPK {
handleColID = col.ID
}
isGeneratedCol := false
if col.VirtualExpr != nil {
isGeneratedCol = true
}
reqCols[idx] = rowcodec.ColInfo{
ID: col.ID,
Tp: int32(col.RetType.Tp),
Flag: int32(col.RetType.Flag),
Flen: col.RetType.Flen,
Decimal: col.RetType.Decimal,
Elems: col.RetType.Elems,
Collate: col.GetType().Collate,
VirtualGenCol: isGeneratedCol,
}
}
defVal := func(i int, chk *chunk.Chunk) error {
ci := getColInfoByID(tbl, reqCols[i].ID)
d, err := table.GetColOriginDefaultValue(ctx, ci)
if err != nil {
return err
}
chk.AppendDatum(i, &d)
return nil
}
return rowcodec.NewChunkDecoder(reqCols, handleColID, defVal, ctx.GetSessionVars().TimeZone)
}
func (b *executorBuilder) buildBatchPointGet(plan *plannercore.BatchPointGetPlan) Executor {
startTS, err := b.getSnapshotTS()
if err != nil {
b.err = err
return nil
}
decoder := NewRowDecoder(b.ctx, plan.Schema(), plan.TblInfo)
e := &BatchPointGetExec{
baseExecutor: newBaseExecutor(b.ctx, plan.Schema(), plan.ID()),
tblInfo: plan.TblInfo,
idxInfo: plan.IndexInfo,
rowDecoder: decoder,
startTS: startTS,
keepOrder: plan.KeepOrder,
desc: plan.Desc,
lock: plan.Lock,
waitTime: plan.LockWaitTime,
partPos: plan.PartitionColPos,
columns: plan.Columns,
}
if e.lock {
b.hasLock = true
}
var capacity int
if plan.IndexInfo != nil {
e.idxVals = plan.IndexValues
capacity = len(e.idxVals)
} else {
// `SELECT a FROM t WHERE a IN (1, 1, 2, 1, 2)` should not return duplicated rows
handles := make([]int64, 0, len(plan.Handles))
dedup := make(map[int64]struct{}, len(plan.Handles))
for _, handle := range plan.Handles {
if _, found := dedup[handle]; found {
continue
}
dedup[handle] = struct{}{}
handles = append(handles, handle)
}
e.handles = handles
capacity = len(e.handles)
}
e.base().initCap = capacity
e.base().maxChunkSize = capacity
e.buildVirtualColumnInfo()
return e
}
func getPhysicalTableID(t table.Table) int64 {
if p, ok := t.(table.PhysicalTable); ok {
return p.GetPhysicalID()
}
return t.Meta().ID
}
func (b *executorBuilder) buildAdminShowTelemetry(v *plannercore.AdminShowTelemetry) Executor {
return &AdminShowTelemetryExec{baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID())}
}
func (b *executorBuilder) buildAdminResetTelemetryID(v *plannercore.AdminResetTelemetryID) Executor {
return &AdminResetTelemetryIDExec{baseExecutor: newBaseExecutor(b.ctx, v.Schema(), v.ID())}
}