You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

231 lines
9.2 KiB

// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
// // Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package core
import (
"context"
"github.com/pingcap/parser/ast"
"github.com/pingcap/parser/model"
"github.com/pingcap/parser/mysql"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/expression/aggregation"
"github.com/pingcap/tidb/planner/util"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/ranger"
)
// maxMinEliminator tries to eliminate max/min aggregate function.
// For SQL like `select max(id) from t;`, we could optimize it to `select max(id) from (select id from t order by id desc limit 1 where id is not null) t;`.
// For SQL like `select min(id) from t;`, we could optimize it to `select max(id) from (select id from t order by id limit 1 where id is not null) t;`.
// For SQL like `select max(id), min(id) from t;`, we could optimize it to the cartesianJoin result of the two queries above if `id` has an index.
type maxMinEliminator struct {
}
func (a *maxMinEliminator) optimize(ctx context.Context, p LogicalPlan) (LogicalPlan, error) {
return a.eliminateMaxMin(p), nil
}
// composeAggsByInnerJoin composes the scalar aggregations by cartesianJoin.
func (a *maxMinEliminator) composeAggsByInnerJoin(aggs []*LogicalAggregation) (plan LogicalPlan) {
plan = aggs[0]
sctx := plan.SCtx()
for i := 1; i < len(aggs); i++ {
join := LogicalJoin{JoinType: InnerJoin}.Init(sctx, plan.SelectBlockOffset())
join.SetChildren(plan, aggs[i])
join.schema = buildLogicalJoinSchema(InnerJoin, join)
join.cartesianJoin = true
plan = join
}
return
}
// checkColCanUseIndex checks whether there is an AccessPath satisfy the conditions:
// 1. all of the selection's condition can be pushed down as AccessConds of the path.
// 2. the path can keep order for `col` after pushing down the conditions.
func (a *maxMinEliminator) checkColCanUseIndex(plan LogicalPlan, col *expression.Column, conditions []expression.Expression) bool {
switch p := plan.(type) {
case *LogicalSelection:
conditions = append(conditions, p.Conditions...)
return a.checkColCanUseIndex(p.children[0], col, conditions)
case *DataSource:
// Check whether there is an AccessPath can use index for col.
for _, path := range p.possibleAccessPaths {
if path.IsTablePath {
// Since table path can contain accessConds of at most one column,
// we only need to check if all of the conditions can be pushed down as accessConds
// and `col` is the handle column.
if p.handleCol != nil && col.Equal(nil, p.handleCol) {
if _, filterConds := ranger.DetachCondsForColumn(p.ctx, conditions, col); len(filterConds) != 0 {
return false
}
return true
}
} else {
// For index paths, we have to check:
// 1. whether all of the conditions can be pushed down as accessConds.
// 2. whether the AccessPath can satisfy the order property of `col` with these accessConds.
result, err := ranger.DetachCondAndBuildRangeForIndex(p.ctx, conditions, path.FullIdxCols, path.FullIdxColLens)
if err != nil || len(result.RemainedConds) != 0 {
continue
}
for i := 0; i <= result.EqCondCount; i++ {
if i < len(path.FullIdxCols) && col.Equal(nil, path.FullIdxCols[i]) {
return true
}
}
}
}
return false
default:
return false
}
}
// cloneSubPlans shallow clones the subPlan. We only consider `Selection` and `DataSource` here,
// because we have restricted the subPlan in `checkColCanUseIndex`.
func (a *maxMinEliminator) cloneSubPlans(plan LogicalPlan) LogicalPlan {
switch p := plan.(type) {
case *LogicalSelection:
newConditions := make([]expression.Expression, len(p.Conditions))
copy(newConditions, p.Conditions)
sel := LogicalSelection{Conditions: newConditions}.Init(p.ctx, p.blockOffset)
sel.SetChildren(a.cloneSubPlans(p.children[0]))
return sel
case *DataSource:
// Quick clone a DataSource.
// ReadOnly fields uses a shallow copy, while the fields which will be overwritten must use a deep copy.
newDs := *p
newDs.baseLogicalPlan = newBaseLogicalPlan(p.ctx, p.tp, &newDs, p.blockOffset)
newDs.schema = p.schema.Clone()
newDs.Columns = make([]*model.ColumnInfo, len(p.Columns))
copy(newDs.Columns, p.Columns)
newAccessPaths := make([]*util.AccessPath, 0, len(p.possibleAccessPaths))
for _, path := range p.possibleAccessPaths {
newPath := *path
newAccessPaths = append(newAccessPaths, &newPath)
}
newDs.possibleAccessPaths = newAccessPaths
return &newDs
}
// This won't happen, because we have checked the subtree.
return nil
}
// splitAggFuncAndCheckIndices splits the agg to multiple aggs and check whether each agg needs a sort
// after the transformation. For example, we firstly split the sql: `select max(a), min(a), max(b) from t` ->
// `select max(a) from t` + `select min(a) from t` + `select max(b) from t`.
// Then we check whether `a` and `b` have indices. If any of the used column has no index, we cannot eliminate
// this aggregation.
func (a *maxMinEliminator) splitAggFuncAndCheckIndices(agg *LogicalAggregation) (aggs []*LogicalAggregation, canEliminate bool) {
for _, f := range agg.AggFuncs {
// We must make sure the args of max/min is a simple single column.
col, ok := f.Args[0].(*expression.Column)
if !ok {
return nil, false
}
if !a.checkColCanUseIndex(agg.children[0], col, make([]expression.Expression, 0)) {
return nil, false
}
}
aggs = make([]*LogicalAggregation, 0, len(agg.AggFuncs))
// we can split the aggregation only if all of the aggFuncs pass the check.
for i, f := range agg.AggFuncs {
newAgg := LogicalAggregation{AggFuncs: []*aggregation.AggFuncDesc{f}}.Init(agg.ctx, agg.blockOffset)
newAgg.SetChildren(a.cloneSubPlans(agg.children[0]))
newAgg.schema = expression.NewSchema(agg.schema.Columns[i])
if err := newAgg.PruneColumns([]*expression.Column{newAgg.schema.Columns[0]}); err != nil {
return nil, false
}
aggs = append(aggs, newAgg)
}
return aggs, true
}
// eliminateSingleMaxMin tries to convert a single max/min to Limit+Sort operators.
func (a *maxMinEliminator) eliminateSingleMaxMin(agg *LogicalAggregation) *LogicalAggregation {
f := agg.AggFuncs[0]
child := agg.Children()[0]
ctx := agg.SCtx()
// If there's no column in f.GetArgs()[0], we still need limit and read data from real table because the result should be NULL if the input is empty.
if len(expression.ExtractColumns(f.Args[0])) > 0 {
// If it can be NULL, we need to filter NULL out first.
if !mysql.HasNotNullFlag(f.Args[0].GetType().Flag) {
sel := LogicalSelection{}.Init(ctx, agg.blockOffset)
isNullFunc := expression.NewFunctionInternal(ctx, ast.IsNull, types.NewFieldType(mysql.TypeTiny), f.Args[0])
notNullFunc := expression.NewFunctionInternal(ctx, ast.UnaryNot, types.NewFieldType(mysql.TypeTiny), isNullFunc)
sel.Conditions = []expression.Expression{notNullFunc}
sel.SetChildren(agg.Children()[0])
child = sel
}
// Add Sort and Limit operators.
// For max function, the sort order should be desc.
desc := f.Name == ast.AggFuncMax
// Compose Sort operator.
sort := LogicalSort{}.Init(ctx, agg.blockOffset)
sort.ByItems = append(sort.ByItems, &util.ByItems{Expr: f.Args[0], Desc: desc})
sort.SetChildren(child)
child = sort
}
// Compose Limit operator.
li := LogicalLimit{Count: 1}.Init(ctx, agg.blockOffset)
li.SetChildren(child)
// If no data in the child, we need to return NULL instead of empty. This cannot be done by sort and limit themselves.
// Since now there would be at most one row returned, the remained agg operator is not expensive anymore.
agg.SetChildren(li)
return agg
}
// eliminateMaxMin tries to convert max/min to Limit+Sort operators.
func (a *maxMinEliminator) eliminateMaxMin(p LogicalPlan) LogicalPlan {
newChildren := make([]LogicalPlan, 0, len(p.Children()))
for _, child := range p.Children() {
newChildren = append(newChildren, a.eliminateMaxMin(child))
}
p.SetChildren(newChildren...)
if agg, ok := p.(*LogicalAggregation); ok {
if len(agg.GroupByItems) != 0 {
return agg
}
// Make sure that all of the aggFuncs are Max or Min.
for _, aggFunc := range agg.AggFuncs {
if aggFunc.Name != ast.AggFuncMax && aggFunc.Name != ast.AggFuncMin {
return agg
}
}
if len(agg.AggFuncs) == 1 {
// If there is only one aggFunc, we don't need to guarantee that the child of it is a data
// source, or whether the sort can be eliminated. This transformation won't be worse than previous.
return a.eliminateSingleMaxMin(agg)
}
// If we have more than one aggFunc, we can eliminate this agg only if all of the aggFuncs can benefit from
// their column's index.
aggs, canEliminate := a.splitAggFuncAndCheckIndices(agg)
if !canEliminate {
return agg
}
for i := range aggs {
aggs[i] = a.eliminateSingleMaxMin(aggs[i])
}
return a.composeAggsByInnerJoin(aggs)
}
return p
}
func (*maxMinEliminator) name() string {
return "max_min_eliminate"
}